Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
J Lipid Res ; 65(9): 100608, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069231

RESUMEN

Eicosanoids are a class of molecules derived from C20 polyunsaturated fatty acids (PUFAs) that play a vital role in mammalian and insect biological systems, including development, reproduction, and immunity. Recent research has shown that insects have significant but lower levels of C20 PUFAs in circulation in comparison to C18 PUFAs. It has been previously hypothesized in insects that eicosanoids are synthesized from C18 precursors, such as linoleic acid (LA), to produce downstream eicosanoids. In this study, we show that introduction of arachidonic acid (AA) stimulates production of cyclooxygenase, lipoxygenase, and cytochrome P450-derived eicosanoids. Downstream immune readouts showed that LA stimulates phagocytosis by hemocytes, while both LA and AA stimulate increased antimicrobial peptide production when D. melanogaster is exposed to a heat-killed bacterial pathogen. In totality, this work identifies PUFAs that are involved in insect immunity and adds evidence to the notion that Drosophila utilizes immunostimulatory lipid signaling to mitigate bacterial infections. Our understanding of immune signaling in the fly and its analogies to mammalian systems will increase the power and value of Drosophila as a model organism in immune studies.

2.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915562

RESUMEN

Entomopathogenic nematodes (EPNs) exhibit a bending-elastic instability, or kink, before becoming airborne, a feature hypothesized but not proven to enhance jumping performance. Here, we provide the evidence that this kink is crucial for improving launch performance. We demonstrate that EPNs actively modulate their aspect ratio, forming a liquid-latched closed loop over a slow timescale O (1 s), then rapidly open it O (10 µs), achieving heights of 20 body lengths (BL) and generating ∼ 10 4 W/Kg of power. Using jumping nematodes, a bio-inspired Soft Jumping Model (SoftJM), and computational simulations, we explore the mechanisms and implications of this kink. EPNs control their takeoff direction by adjusting their head position and center of mass, a mechanism verified through phase maps of jump directions in simulations and SoftJM experiments. Our findings reveal that the reversible kink instability at the point of highest curvature on the ventral side enhances energy storage using the nematode's limited muscular force. We investigated the impact of aspect ratio on kink instability and jumping performance using SoftJM, and quantified EPN cuticle stiffness with AFM, comparing it with C. elegans . This led to a stiffness-modified SoftJM design with a carbon fiber backbone, achieving jumps of ∼25 BL. Our study reveals how harnessing kink instabilities, a typical failure mode, enables bidirectional jumps in soft robots on complex substrates like sand, offering a novel approach for designing limbless robots for controlled jumping, locomotion, and even planetary exploration.

3.
Pathogens ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535588

RESUMEN

The emergence of infectious diseases presents a significant global health, economic, and security risk. Climate change can unexpectedly lead to the spread of pathogens, vectors, or hosts into new areas, contributing to the rise of infectious diseases. Surveillance plays a crucial role in monitoring disease trends and implementing control strategies. In this study, we document the first discovery of Heterobilharzia americana, a parasitic schistosome of mammals and its intermediate hosts Galba cubensis and Galba humilis along the banks of the Colorado River in California. We conducted multiple samplings of snails from various locations in the region with a previous history of canine schistosomiasis. Nucleotide sequencing of the multiple regions of the snails' and parasites' DNA revealed the coexistence of G. cubensis and G. humilis, both infected with H. americana. Phylogenetic analyses further validate the presence of H. americana in California, suggesting a wider distribution than previously reported. Our findings have implications for public health, veterinary medicine, and biodiversity conservation, contributing to developing effective control strategies to prevent the spread of this emerging infectious disease.

4.
J Parasitol ; 110(1): 22-39, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334188

RESUMEN

A new species of entomopathogenic nematode, Steinernema adamsi n. sp., was recovered from the soil of a longan tree (Dimocarpus sp.) in Mueang Lamphun District, Thailand, using baiting techniques. Upon analysis of the nematode's morphological traits, we found it to be a new species of Steinernema and a member of the Longicaudatum clade. Molecular analyses of the ITS rDNA and D2D3 of 28S rDNA sequences further confirmed that S. adamsi n. sp. is a new species of the Longicaudatum clade, which is closely related to Steinernema guangdongense and Steinernema longicaudam. Using morphometric analysis, the infective juveniles measure between 774.69 and 956.96 µm, males have a size range of 905.44 to 1,281.98 µm, and females are within the range of 1,628.21 to 2,803.64 µm. We also identified the symbiotic bacteria associated with the nematode based on 16S sequences as Xenorhabdus spp. closely related toXenorhabdus griffiniae. Furthermore, we have successfully assessed a cryopreservation method for the long-term preservation of S. adamsi n. sp. Successful cryopreservation of this new species will allow for the longer preservation of its traits and will be valuable for its future use. The discovery of this new species has significant implications for the development of effective biological control agents in Thailand, and our work contributes to our understanding of the diversity and evolution of entomopathogenic nematodes.


Asunto(s)
Rabdítidos , Xenorhabdus , Animales , Femenino , Masculino , Rabdítidos/genética , Tailandia , Filogenia , ADN Ribosómico/genética , Suelo
5.
PLoS Pathog ; 19(12): e1011797, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38079450

RESUMEN

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.


Asunto(s)
Ancylostomatoidea , Infecciones por Uncinaria , Ratones , Animales , Citocinas , Nippostrongylus , Factor de Transcripción STAT6/genética
6.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37187899

RESUMEN

Tarantobelus jeffdanielsi is a recently described nematode parasite of tarantulas, originally isolated from a tarantula breeder in Virginia Beach, VA. We describe a new case of this parasite infecting tarantulas at a breeding facility in Los Angeles, California. Nematodes were isolated from the oral cavity of a captive bred Psalmophoeus iriminia commonly referred to as a Venezuelan sun tiger tarantula. rDNA sequencing was conducted to identify the species and generate a phylogeny tree.

7.
Front Immunol ; 14: 1122451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006283

RESUMEN

A key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.


Asunto(s)
Nematodos , Fosfolipasas A2 Secretoras , Animales , Drosophila melanogaster , Hemocitos , Inmunidad Humoral , Interacciones Huésped-Parásitos , Nematodos/microbiología , Nematodos/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-36518619

RESUMEN

Our objective was to develop a clinical practice guideline (CPG) for the treatment of acute lower extremity fractures in persons with a chronic spinal cord injury (SCI). Methods: Information from a previous systematic review that addressed lower extremity fracture care in persons with an SCI as well as information from interviews of physical and occupational therapists, searches of the literature, and expert opinion were used to develop this CPG. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system was used to determine the quality of evidence and the strength of the recommendations. An overall GRADE quality rating was applied to the evidence. Conclusions: Individuals with a chronic SCI who sustain an acute lower extremity fracture should be provided with education regarding the risks and benefits of operative and nonoperative management, and shared decision-making for acute fracture management should be used. Nonoperative management historically has been the default preference; however, with the advent of greater patient independence, improved surgical techniques, and advanced therapeutics and rehabilitation, increased use of surgical management should be considered. Physical therapists, kinesiotherapists, and/or occupational therapists should assess equipment needs, skills training, and caregiver assistance due to changes in mobility resulting from a lower extremity fracture. Therapists should be involved in fracture management as soon as possible following fracture identification. Pressure injuries, compartment syndrome, heterotopic ossification, nonunion, malunion, thromboembolism, pain, and autonomic dysreflexia are fracture-related complications that clinicians caring for patients who have an SCI and a lower extremity fracture may encounter. Strategies for their treatment are discussed. The underlying goal is to return the patient as closely as possible to their pre-fracture functional level with operative or nonoperative management.

9.
J Nematol ; 54(1): 20220035, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36338426

RESUMEN

Plectus murrayi is a free-living microbivorous nematode endemic to Antarctic soils. Our draft assembly of its mitogenome was 15,656 bp long, containing 12 protein-coding, eight transfer RNA (tRNA), and two ribosomal RNA (rRNA) genes. Mitophylogenomic analyses extend our understanding of mitochondrial evolution in Nematoda.

10.
BMC Genomics ; 23(1): 741, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344922

RESUMEN

BACKGROUND: Nematodes are a major group of soil inhabiting organisms. Heterorhabditis nematodes are insect-pathogenic nematodes and live in a close symbiotic association with Photorhabdus bacteria. Heterorhabditis-Photorhabdus pair offers a powerful and genetically tractable model to study animal-microbe symbiosis. It is possible to generate symbiont bacteria free (axenic) stages in Heterorhabditis. Here, we compared the transcriptome of symbiotic early-adult stage Heterorhabditis nematodes with axenic early-adult nematodes to determine the nematode genes and pathways involved in symbiosis with Photorhabdus bacteria. RESULTS: A de-novo reference transcriptome assembly of 95.7 Mb was created for H. bacteriophora by using all the reads. The assembly contained 46,599 transcripts with N50 value of 2,681 bp and the average transcript length was 2,054 bp. The differentially expressed transcripts were identified by mapping reads from symbiotic and axenic nematodes to the reference assembly. A total of 754 differentially expressed transcripts were identified in symbiotic nematodes as compared to the axenic nematodes. The ribosomal pathway was identified as the most affected among the differentially expressed transcripts. Additionally, 12,151 transcripts were unique to symbiotic nematodes. Endocytosis, cAMP signalling and focal adhesion were the top three enriched pathways in symbiotic nematodes, while a large number of transcripts coding for various responses against bacteria, such as bacterial recognition, canonical immune signalling pathways, and antimicrobial effectors could also be identified. CONCLUSIONS: The symbiotic Heterorhabditis nematodes respond to the presence of symbiotic bacteria by expressing various transcripts involved in a multi-layered immune response which might represent non-systemic and evolved localized responses to maintain mutualistic bacteria at non-threatening levels. Subject to further functional validation of the identified transcripts, our findings suggest that Heterorhabditis nematode immune system plays a critical role in maintenance of symbiosis with Photorhabdus bacteria.


Asunto(s)
Photorhabdus , Rhabditoidea , Animales , Photorhabdus/genética , Rhabditoidea/genética , Simbiosis/genética , Análisis de Secuencia de ARN , ARN
11.
Pathogens ; 11(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36297151

RESUMEN

A key component to understanding host-parasite interactions is the molecular crosstalk between host and parasite. Excreted/secreted products (ESPs) released by parasitic nematodes play an important role in parasitism. They can directly damage host tissue and modulate host defense. Steinernema carpocapsae, a well-studied parasite of insects releases approximately 500 venom proteins as part of the infection process. Though the identity of these proteins is known, few have been studied in detail. One protein family present in the ESPs released by these nematodes is the ShK family. We studied the most abundant ShK-domain-containing protein in S. carpocapsae ESPs, Sc-ShK-1, to investigate its effects in a fruit fly model. We found that Sc-ShK-1 is toxic under high stress conditions and negatively affects the health of fruit flies. We have shown that Sc-ShK-1 contributes to host immunomodulation in bacterial co-infections resulting in increased mortality and microbial growth. This study provides an insight on ShK-domain-containing proteins from nematodes and suggests these proteins may play an important role in host-parasite interactions.

12.
Front Microbiol ; 13: 903136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910595

RESUMEN

Nematodes in the genus Phasmarhabditis can infect and kill slugs and snails, which are important agricultural pests. This useful trait has been commercialized by the corporation BASF after they mass produced a product labeled Nemaslug®. The product contains Phasmarhabditis hermaphrodita, which has been cultured with Moraxella osloensis, a bacterial strain that was originally thought to be responsible for causing mortality in slugs and snails. The exact mechanism leading to death in a Phasmarhabditis infected host is unknown but may involve contributions from nematode-associated bacteria. The naturally occurring microbial community of Phasmarhabditis is unexplored; the previous Phasmarhabditis microbial community studies have focused on laboratory grown or commercially reared nematodes, and in order to obtain a deeper understanding of the parasite and its host interactions, it is crucial to characterize the natural microbial communities associated with this organism in the wild. We sampled Phasmarhabditis californica, Phasmarhabditis hermaphrodita, and Phasmarhabditis papillosa directly from their habitats in Central and Southern California nurseries and garden centers and identified their native microbial community via 16S amplicon sequencing. We found that the Phasmarhabditis microbial community was influenced by species, location, and possibly gastropod host from which the nematode was collected. The predominant bacteria of the Phasmarhabditis isolates collected included Shewanella, Clostridium perfringens, Aeromonadaceae, Pseudomonadaceae, and Acinetobacter. Phasmarhabditis papillosa isolates exhibited an enrichment with species belonging to Acinetobacter or Pseudomonadaceae. However, further research must be performed to determine if this is due to the location of isolate collection or a species specific microbial community pattern. More work on the natural microbial community of Phasmarhabditis is needed to determine the role of bacteria in nematode virulence.

13.
PLoS One ; 17(7): e0270185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35867654

RESUMEN

Theba pisana is an invasive snail pest which has established itself in San Diego County and some areas of Los Angeles County, California. The snail has grown to large populations in some areas and mitigation is becoming necessary to stop the spread of the species. In a previous study, three US strains of Phasmarhabditis species (P. californica, P. papillosa, and P. hermaphrodita) effectively killed juvenile (0.25 gram each, 4-6 mm wide) T. pisana in laboratory conditions at 5 times (150 IJs/cm2) the recommended dose. Based on laboratory assays, we demonstrated that the same three US strains of Phasmarhabditis can effectively kill larger adult T. pisana (0.4-1.2 gram, 11.5-15mm wide) in two weeks at the same dose. The strains were more efficient at killing T. pisana than the compared molluscicide Sluggo Plus®. Results further showed that the most virulent P. californica did not effectively kill T. pisana at lower doses of 30 IJs/cm2 and 90 IJs/cm2. Additional research is needed to develop the most efficient means of application of Phasmarhabditis to mitigate T. pisana in the field.


Asunto(s)
Rhabditoidea , Animales , Caracoles
14.
Front Plant Sci ; 13: 856863, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656014

RESUMEN

Three species of Phasmarhabditis were recovered from 75 nurseries and garden centers in 28 counties in California during fall and winter 2012-2021. A total of 18 mollusk species were recovered, most of them invasive. Nematodes were identified by sequencing the D2-D3 expansion segments of the large subunit (LSU or 28S) rRNA. Based on these surveys, P. californica was the most widespread species (37 isolates, 53.6% recovery); followed by P. hermaphrodita (26 isolates; 37.7% recovery); P. papillosa and a closely related P. papillosa isolate (6 isolates; 8.7% recovery). Nematode isolates were mainly collected from four invasive slugs (Deroceras reticulatum, D. laeve, Arion hortensis agg, Ambigolimax valentianus) and snails (Oxychilus spp. and Discus spp.). Results suggest that P. californica and P. hermaphrodita share an ecological niche in Northern, Central, Coastal, and Southern California, north of Los Angeles County.

15.
PLoS Pathog ; 18(4): e1010424, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446920

RESUMEN

Fatty acid-and retinol-binding proteins (FARs) belong to a unique family of excreted/secreted proteins (ESPs) found exclusively in nematodes. Much of our understanding of these proteins, however, is limited to their in vitro binding characteristics toward various fatty acids and retinol and has provided little insight into their in vivo functions or mechanisms. Recent research, however, has shown that FARs elicit an immunomodulatory role in plant and animal model systems, likely by sequestering lipids involved in immune signaling. This alludes to the intricate relationship between parasitic nematode effectors and their hosts.


Asunto(s)
Nematodos , Proteínas de Unión al Retinol , Animales , Ácidos Grasos/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Nematodos/genética , Nematodos/metabolismo , Proteínas de Unión al Retinol/genética , Proteínas de Unión al Retinol/metabolismo , Vitamina A/metabolismo
16.
J Parasitol ; 108(2): 199-208, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435987

RESUMEN

Parasitic nematodes infect a variety of organisms including insects and vertebrates. To survive, they evade host immune responses to cause morbidity and mortality. Despite the vast clinical knowledge regarding nematode infections and their biological makeup, molecular understanding of the interactions between host and parasite remains poorly understood. The utilization of model systems has thus been employed to help elucidate the molecular interactions of the host immune response during parasitic nematode infection. Using model systems, it has been well established that parasitic nematodes evade host immunity by releasing excretory/secretory proteins (ESPs), which are involved in immunomodulation. Model systems have enabled researchers to characterize further the underlying mechanisms ESPs use to facilitate evasion and modulation of the host immune response. This review assessed notable ESPs from parasitic nematodes that infect vertebrates or insects and have been studied in mechanistic detail. Being able to characterize how ESPs affect the immune systems of hosts on a molecular level increases our understanding of host-parasite interactions and could lead to the identification of novel therapeutic targets and important molecular pathways.


Asunto(s)
Nematodos , Infecciones por Nematodos , Parásitos , Animales , Interacciones Huésped-Parásitos/fisiología , Inmunidad , Inmunomodulación , Infecciones por Nematodos/parasitología
18.
J Parasitol ; 108(1): 30-43, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038325

RESUMEN

Multiple tarantula deaths for a wholesale breeder were reported in 2018. The breeder noticed white discharge in the oral cavities of the tarantulas. Upon inspection, it was discovered that the white discharge was a large group of nematodes intertwined inside the tarantula's oral cavity. We examined the nematodes and propose a new species, Tarantobelus jeffdanielsi n. sp., in the currently monotypic genus Tarantobelus based on a combination of morphological and morphometrical data and unique nuclear rDNA 28S and 18S sequences. Based on phylogenetic analyses, the previously described Tarantobelus arachnicida was relocated, along with T. jeffdanielsi, into the family Panagrolaimidae. We also provide evidence of the ability of T. jeffdanielsi to parasitize Galleria mellonella larvae and the tarantula Grammostola pulchra. The life span and fecundity of the new species were also assessed, resulting in an 11.2-d average life span, and a total fertility rate of 158 nematodes/adult.


Asunto(s)
Rabdítidos/clasificación , Arañas/parasitología , Animales , ADN Ribosómico/química , Femenino , Fertilidad , Lepidópteros/parasitología , Funciones de Verosimilitud , Longevidad , Masculino , Filogenia , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Rabdítidos/anatomía & histología , Rabdítidos/genética , Rabdítidos/patogenicidad , Análisis de Secuencia de ADN , Virulencia
19.
PLoS Pathog ; 17(10): e1010027, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714893

RESUMEN

Parasitic nematodes cause significant morbidity and mortality globally. Excretory/secretory products (ESPs) such as fatty acid- and retinol- binding proteins (FARs) are hypothesized to suppress host immunity during nematode infection, yet little is known about their interactions with host tissues. Leveraging the insect parasitic nematode, Steinernema carpocapsae, we describe here the first in vivo study demonstrating that FARs modulate animal immunity, causing an increase in susceptibility to bacterial co-infection. Moreover, we show that FARs dampen key components of the fly immune response including the phenoloxidase cascade and antimicrobial peptide (AMP) production. Our data also reveal that FARs deplete lipid signaling precursors in vivo as well as bind to these fatty acids in vitro, suggesting that FARs elicit their immunomodulatory effects by altering the availability of lipid signaling molecules necessary for an efficient immune response. Collectively, these data support a complex role for FARs in immunosuppression in animals and provide detailed mechanistic insight into parasitism in phylum Nematoda.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/metabolismo , Interacciones Huésped-Parásitos/fisiología , Infecciones por Nematodos/inmunología , Proteínas de Unión al Retinol/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster , Nematodos , Infecciones por Nematodos/parasitología
20.
MicroPubl Biol ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34355139

RESUMEN

Infective juveniles of the insect-parastic nematode Steinernema carpocapsae canjump greater than 6 times their height, a striking evolved novelty in some species of this genus. Using high-speed videography, we observed the kinematics of Steinernema carpocapsae spontaneousjumping behavior. Our analysis places a lower bound on the velocity and acceleration of these worms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA