Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(8): 988, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490187

RESUMEN

Pesticide use has increased in the Lake Tana sub-basin due to increased agricultural activity, potentially endangering nontargeted organisms. To assess its potential impact on fish health and fish-consuming human populations, pesticide concentrations in the fillet and liver tissue of three fish species, namely Labeobarbus megastoma, Labeobarbus tsanensis, and Oreochromis niloticus, were investigated in Lake Tana. Fish samples were taken from the lake near the rivers of Ribb and Gumara, which flow through agricultural areas where considerable amounts of pesticides have been applied. A total of 96 fish samples were collected. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) revealed the presence of ten pesticides. Pyrimethanil was frequently detected in 96% of liver and 65% of fillet samples at a median concentration of 33.9 µg kg-1 and 19.7 µg kg-1, respectively. The highest concentration of pyrimethanil was found in L. megastoma (1850.0 µg kg-1). Labeobarbus megastoma also had the highest concentration of oxamyl (507.0 µg kg-1) and flazasulfuron (60.1 µg kg-1) detected in the liver tissue. The highest concentration of carbaryl (56.5 µg kg-1) was found in the liver tissue of O. niloticus. Fish tissue samples from the two study sites contained pyrimethanil, oxamyl, carbaryl, and flazasulfuron. Only pyrimethanil showed a statistically significant difference between the two sites and the species L. megastoma and L. tsanensis. The amounts of pesticides found in the fish species pose no direct risk to the health of fish consumer human population. However, the results show that the lake ecosystem needs immediate attention and regular monitoring of the rising pesticide usage in the lake watershed.


Asunto(s)
Cíclidos , Plaguicidas , Animales , Humanos , Etiopía , Carbaril , Cromatografía Liquida , Ecosistema , Lagos , Espectrometría de Masas en Tándem , Monitoreo del Ambiente
2.
J Environ Manage ; 344: 118378, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356332

RESUMEN

Soil erosion has become a worldwide problem that threatens the environment and the future of economic and social development. The purpose of this study is to investigate the contribution of steep slopes and gullies to erosion in high precipitation tropical areas of the Ethiopian highlands. A trapezoidal weir was installed at the head and tail of the gully to monitor the discharge and sediment concentration from 2017 to 2020. Sediment yield and runoff are heavily influenced by the amount and timing of precipitation. The coefficients of variation for total sediment loads ranged from 65.1 to 96.1% at the head and 17.1-78.1% at the tail; the lowest coefficients were found in 2018 and the highest in 2020. Furthermore, 85% of the sediment at the tail comes from the gully, according to the four-year sediment budget. Further, a hysteretic analysis of suspended sediment concentration and runoff revealed that hilly sediment sources are limited (clockwise), then sediment can be transported through the gully via bank failures (counterclockwise). Study findings contributed to a classification of runoff patterns and an investigation of suspended sediment dynamics. In the gully tail, sediment yield was higher than in the head, suggesting gully sediment contributed more to sediment yield than large upland catchments. As a result of the study, we have been able to develop practical recommendations for managing gully erosion in the future.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Monitoreo del Ambiente , Etiopía , Erosión del Suelo
3.
Heliyon ; 9(5): e15905, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215801

RESUMEN

Food and nutrition security is not only addressed by increasing production alone, it should also ensure by reducing food loss. Onion has a great contribution to both economic and health issues, however, its production and productivity in the country is low. Thus, the study was initiated to identify multiple constraints on onion production and postharvest handling practices and to determine the extent of postharvest loss along the supply chain in northwestern Ethiopia. The survey was conducted on production, marketing, and consumption at farm, wholesale, retailer, and consumers level. The multistage sampling procedure was employed. The present results revealed that sex, age, educational level, production experience, land covered by onion, and household size has a significant influence on onion production. Sex, age, education level, active household size, selling experience, amount purchased, and storage duration have a significant association with onion production and postharvest loss. Major onion production and post-harvest loss constraints were high perishability, nature of the crop, market, linkage problem and low market price, lack of awareness of using post-harvest technologies, absence of better storable varieties, shortage of fertilizer access, disease and insect pests. The whole purchased produce never reached the consumer's hands. The total postharvest loss of onion at the farmer, wholesale, retail, and consumer level was found to be 29.775%, of which the higher proportion of losses (35.5%) was observed at the farmer's level. Based on the findings of the present study, onion producers were challenged by timely and adequate supplies and unfair, high cost of major production inputs, and high post-harvest loss. Therefore, producers and handlers in each supply chain need to be trained on affordable and applicable postharvest technologies. In addition, continuous capacity-building training, improving infrastructures, and input access along the supply chain should be designed and implemented to improve better crop management and postharvest handling practices. Moreover, marketing cooperatives working on onion postharvest handling and marketing systems should be functional to absorb surplus production and ensure continuous supply to the market. Thus, meaningful interventions in the development and implementation of policy on sustainable production, handling practices, and supply of onion should be designed.

4.
Heliyon ; 9(3): e14012, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36895390

RESUMEN

Data from remote sensing devices are essential for monitoring environmental protection practices and estimating crop yields. However, yield estimates in Ethiopia are based on time-consuming surveys. We used Sentinel-2, spectroradiometeric, and ground-truthing data to estimate the grain yield (GY) of two major crops, teff, and finger millet, in Ethiopia's Aba Gerima catchment in 2020 and 2021. At the flowering stage, we performed supervised classification on October Sentinel-2 images and spectral reflectance measurement. We used regression models to identify and predict crop yields, as evaluated by the coefficient of determination (adjusted R2) and root mean square error (RMSE). The enhanced vegetation index (EVI) and normalized-difference vegetation index (NDVI) provided the best fit to the data among the vegetation indices used to predict teff and finger millet GY. Soil bund construction increased the majority of vegetation indices and GY of both crops. We discovered a strong correlation between GY and the satellite EVI and NDVI. However, NDVI and EVI had the greatest influence on teff GY (adjusted R2 = 0.83; RMSE = 0.14 ton/ha), while NDVI had the greatest influence on finger millet GY (adjusted R2 = 0.85; RMSE = 0.24 ton/ha). Teff GY ranged from 0.64 to 2.16 ton/ha for bunded plots and 0.60 to 1.85 ton/ha for non-bunded plots using Sentinel-2 data. Besides, finger millet GY ranged from 1.92 to 2.57 ton/ha for bunded plots and 1.81 to 2.38 ton/ha for non-bunded plots using spectroradiometric data. Our findings show that Sentinel-2- and spectroradiometeric-based monitoring can help farmers manage teff and finger millet to achieve higher yields, more sustainable food production, and better environmental quality in the area. The study's findings revealed a link between VIs and soil management practices in soil ecological systems. Model extrapolation to other areas will necessitate local validation.

5.
J Environ Manage ; 326(Pt A): 116707, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375436

RESUMEN

Soil erosion by water is a major cause of land degradation in the highlands of Ethiopia and anywhere else in the world, but its magnitude and variability are rarely documented across land uses and climatological conditions. The purpose of this study was to examine runoff and soil loss responses under cropland (CL) and grazing land (GL) management practices in three climatic regions of the Ethiopian highlands: semi-arid (Mayleba), dry sub-humid (Gumara), and humid (Guder). We measured runoff and soil loss using runoff plots with and without soil and water conservation (SWC) measures (trenches, stone/soil bunds [embankments] with trenches on the upslope side, and exclosure) during the rainy season (July-September). The results revealed significant variation in runoff and soil loss amounts across land uses, SWC measures, and climatic regions. At Mayleba, seasonal runoff and soil loss in control plot were far higher from GL (280 mm, 26.5 t ha-1) than from CL (108 mm, 7.0 t ha-1) largely due to lack of protective vegetation cover and soil disruption because of intense grazing. In contrast, at Gumara and Guder, seasonal soil loss values were much higher from CL (21.4-71.2 t ha-1) than from GL (0.6-24.2 t ha-1) irrespective of runoff values. This was attributed to the excessive tillage/weeding operations involved in cultivation of teff (cereal crop) at Gumara and potato at Guder. Although SWC measures (practices) substantially reduced runoff and soil loss (decreased by 23%-86%) relative to control plot, seasonal soil loss under GL uses with trenches at Mayleba (12.6 t ha-1), CL with soil bunds and trenches at Gumara (22.1 t ha-1), and Guder (21.4 t ha-1) remained higher than the average tolerable soil loss rate (10 t ha-1 year-1) proposed for the Ethiopian highlands. This suggests that SWC measures should be carefully designed and evaluated specific to land use and climatic conditions. Overall, the results of this study can help improve SWC planning in regions where land use and climate impact on soil erosion vary across geographical areas, as they do in Ethiopia and anywhere else. However, further investigation is crucial with replication of measurements over years and locations to provide more accurate information on land use, management and climate controls on hydrological and soil erosion processes.


Asunto(s)
Conservación de los Recursos Hídricos , Suelo , Etiopía , Conservación de los Recursos Naturales/métodos , Lluvia
6.
Environ Monit Assess ; 195(1): 65, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329265

RESUMEN

The temporal dynamics of soil respiration change in response to different land management practices are not well documented. This study investigated the effects of soil bunds on the monthly and diurnal dynamics of soil respiration rates in the highlands of the Upper Blue Nile basin in Ethiopia. Six plots (with and without soil bunds, three replicates) were used for measurement of seasonal soil respiration, and 18 plots were used for measurement of diurnal soil respiration. We collected seasonal variation data on a monthly basis from September 2020 to August 2021. Diurnal soil respiration data were collected four times daily (5 a.m., 11 a.m., 5 p.m., and 11 p.m.) for 2 weeks from 16 to 29 September 2021. A Wilcoxon signed-rank test showed that seasonal soil respiration rates differed significantly (p < 0.05) between soil bund and control plots in all seasons. In plots with soil bunds, seasonal soil respiration rates were lowest in February (1.89 ± 0.3 µmol CO2 m-2 s-1, mean ± SE) and highest in October (14.54 ± 0.5 µmol CO2 m-2 s-1). The diurnal soil respiration rate was significantly (p < 0.05) higher at 11 a.m. than at other times, and was lowest at 5 a.m. Seasonal variation in soil respiration was influenced by soil temperature negatively and moisture positively. Diurnal soil respiration was significantly affected by soil temperature but not by soil moisture. Further study is required to explore how differences in soil microorganisms between different land management practices affect soil respiration rates.


Asunto(s)
Dióxido de Carbono , Suelo , Estaciones del Año , Dióxido de Carbono/análisis , Conservación de los Recursos Naturales , Etiopía , Monitoreo del Ambiente , Temperatura , Agricultura , Respiración , China
7.
PLoS One ; 17(7): e0270629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862343

RESUMEN

As classical soil analysis is time-consuming and expensive, there is a growing demand for visible, near-infrared, and short-wave infrared (Vis-NIR-SWIR, wavelength 350-2500 nm) spectroscopy to predict soil properties. The objectives of this study were to investigate the effects of soil bunds on key soil properties and to develop regression models based on the Vis-NIR-SWIR spectral reflectance of soils in Aba Gerima, Ethiopia. Soil samples were collected from the 0-30 cm soil layer in 48 experimental teff (Eragrostis tef) plots and analysed for soil texture, pH, organic carbon (OC), total nitrogen (TN), available phosphorus (av. P), and potassium (av. K). We measured reflectance from air-dried, ground, and sieved soils with a FieldSpec 4 Spectroradiometer. We used regression models to identify and predict soil properties, as assessed by the coefficient of determination (R2), root mean square error (RMSE), bias, and ratio of performance to deviation (RPD). The results showed high variability (CV ≥ 35%) and substantial variation (P < 0.05 to P < 0.001) in soil texture, OC, and av. P in the catchment. Soil reflectance was lower from bunded plots. The pre-processing techniques, including multiplicative scatter correction, median filter, and Gaussian filter for OC, clay, and sand, respectively were used to transform the soil reflectance. Statistical results were: R2 = 0.71, RPD = 8.13 and bias = 0.12 for OC; R2 = 0.93, RPD = 2.21, bias = 0.94 for clay; and R2 = 0.85 with RPD = 7.54 and bias = 0.0.31 for sand with validation dataset. However, care is essential before applying the models to other regions. In conclusion, the findings of this study suggest spectroradiometry can supplement classical soil analysis. However, more research is needed to increase the prediction performance of Vis-NIR-SWIR reflectance spectroscopy to advance soil management interventions.


Asunto(s)
Conservación de los Recursos Naturales , Suelo , Carbono/análisis , Arcilla , Etiopía , Fertilidad , Arena , Suelo/química , Espectroscopía Infrarroja Corta/métodos
8.
PLoS One ; 17(6): e0269791, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35709196

RESUMEN

Crop yield prediction provides information to policymakers in the agricultural production system. This study used leaf reflectance from a spectroradiometer to model grain yield (GY) and aboveground biomass yield (ABY) of maize (Zea mays L.) at Aba Gerima catchment, Ethiopia. A FieldSpec IV (350-2,500 nm wavelengths) spectroradiometer was used to estimate the spectral reflectance of crop leaves during the grain-filling phase. The spectral vegetation indices, such as enhanced vegetation index (EVI), normalized difference VI (NDVI), green NDVI (GNDVI), soil adjusted VI, red NDVI, and simple ratio were deduced from the spectral reflectance. We used regression analyses to identify and predict GY and ABY at the catchment level. The coefficient of determination (R2), the root mean square error (RMSE), and relative importance (RI) were used for evaluating model performance. The findings revealed that the best-fitting curve was obtained between GY and NDVI (R2 = 0.70; RMSE = 0.065; P < 0.0001; RI = 0.19), followed by EVI (R2 = 0.65; RMSE = 0.024; RI = 0.61; P < 0.0001). While the best-fitting curve was obtained between ABY and GNDVI (R2 = 0.71; RI = 0.24; P < 0.0001), followed by NDVI (R2 = 0.77; RI = 0.17; P < 0.0001). The highest GY (7.18 ton/ha) and ABY (18.71 ton/ha) of maize were recorded at a soil bunded plot on a gentle slope. Combined spectral indices were also employed to predict GY with R2 (0.83) and RMSE (0.24) and ABY with R2 (0.78) and RMSE (0.12). Thus, the maize's GY and ABY can be predicted with acceptable accuracy using spectral reflectance indices derived from spectroradiometer in an area like the Aba Gerima catchment. An estimation model of crop yields could help policy-makers in identifying yield-limiting factors and achieve decisive actions to get better crop yields and food security for Ethiopia.


Asunto(s)
Hojas de la Planta , Zea mays , Agricultura , Grano Comestible , Etiopía , Suelo
9.
Environ Manage ; 68(4): 553-565, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34427762

RESUMEN

Production of value-added outputs from biomass residues represents an opportunity to increase the supply of renewable energy in Ethiopia. Particularly, agroforestry could provide biomass residues for improved bioenergy products. The aim of this study was to characterize the interest of growers to provide biomass residues to a hypothetical biomass feedstock market. This study relied on a survey conducted on a sample of 240 farmers. Although the awareness of potential biomass products was generally quite low, a majority of farmers expressed interest in supplying biomass residues, but the level of interest depended on certain individual socio-economic and demographic characteristics. For example, younger and female household heads were found to be more interested in participating in the hypothetical biomass market, as were households with an improved biomass stove, larger land holdings, and higher income levels. In addition, larger households and those that felt less vulnerable to firewood scarcity also expressed more interest. As a whole, the results imply that farmers, particularly those with younger and female heads of households, should be supported with programs tailored to ensure their inclusion in biomass supply chains. Respondents generally preferred farm-gate sales of biomass, so the collecting, baling, and transporting of woody residues need to be properly incentivized or new actors need to be recruited into the supply chain. Providing households with energy-efficient tools such as improved stoves would not only increase demand for biomass products, but also increase the amount of biomass residues that could be supplied to the market instead of used at home.


Asunto(s)
Agricultura Forestal , Energía Renovable , Población Rural , Biomasa , Comercio , Etiopía , Composición Familiar , Femenino , Humanos
10.
Sci Total Environ ; 786: 147450, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33965819

RESUMEN

Improving our understanding of how different land uses and management practices affect soil nutrient outflows in sub-Saharan Africa could aid in developing sustainable practices. The objective of this study was to analyse the variation in outflows of soil total nitrogen (TN) and available phosphorus (Pav) as influenced by land use types (cropland, grazing land, and bushland) and land management practices (soil bunds for cropland and exclosures for non-croplands) in the three contrasting agro-ecological zones of the Upper Blue Nile basin, Ethiopia. Field data were collected for TN and Pav outflows by water erosion (Eo), leaching (Lo), product harvest (Ho), and gaseous emissions (Go) from 18 runoff plots (30 m × 6 m) for two years (2018-2019). TN and Pav losses significantly varied (p < 0.05, p < 0.01) among agro-ecological zones, land use types, and management practices. Losses of TN ranged from 39.6 to 55.5 kg ha-1 yr-1 and those of Pav from 4.1 to 5.9 kg ha-1 yr-1, with a total replacement cost of US$26-38 ha-1 yr-1. Nutrient losses and cost generally increased from lowland (Dibatie) to midland (Aba Gerima) to highland (Guder), although the highland and midland sites did not differ significantly (p > 0.05) in nutrient losses. Cropland showed significantly higher TN and Pav losses than other land use types, but TN loss did not differ significantly between grazing and bushland. In all land use types at all sites, the magnitude of nutrient losses was Ho >Eo >Lo >Go. In plots with land management practices, TN and Pav losses associated with Eo, Lo, and Go were reduced on average by 44-76%, 9-47%, and 1%-36%, respectively. These practices were most effective to reduce Eo nutrient losses. Further study is required to analyzing the soil nutrient balance and identify priority areas for implementing mitigation measures.

11.
Sci Total Environ ; 689: 347-365, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31277003

RESUMEN

Land use/land cover (LULC) change and climate variability are two major factors controlling hydrological responses. The present study analyzed the separate and combined effects of these two factors on annual surface runoff and evapotranspiration (ET) after validating the selected models in three drought-prone watersheds of the Upper Blue Nile basin: Kasiry (highland), Kecha (midland), and Sahi (lowland). LULC maps were produced from aerial photographs and very-high-resolution satellite images from 1982, 2005/06 and 2016/17. During 1982-2016/17 the area covered by natural vegetation showed dramatic decreases, ranging from 60.2% in Kasiry to 51.8% in Sahi. In contrast, increases in cultivated land ranged from 36.7% in Kasiry to 279.6% in Sahi; the smaller increase in Kasiry resulted from the conversion of a portion of the cultivated land to an Acacia decurrens plantation after 2006. The observed LULC changes over the study period resulted in runoff increases ranging from 4% in Kecha to 28.7% in Kasiry. Climate variability in terms of annual rainfall had no significant effect on estimated runoff; whereas both LULC change and climate variability had significant effect on estimated ET. Though climate variability increased ET from 33.6% in Kecha to 42.1% in Kasiry, the LULC change related to the reduction in natural vegetation had an offsetting effect, which led to overall decreases in ET ranging from 15.8% in Kasiry to 32.8% in Kecha watershed. As changes in LULC and climate are expected to intensify in the future, it is important to study further hydrological responses considering these changes to devise future sustainable land and water management strategies.


Asunto(s)
Agricultura , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Movimientos del Agua , Etiopía , Hidrología
12.
Sci Total Environ ; 648: 1462-1475, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340291

RESUMEN

Understanding the effect of land use and sustainable land management (SLM) practices on runoff and soil loss (SL) is essential for adopting suitable strategies to control soil erosion. The purpose of this study was to analyze runoff and SL from different land use types and evaluate the effectiveness of different SLM practices through monitoring runoff and sediment from 42 runoff plots (30 m × 6 m) in different agro-ecologies of the Upper Blue Nile basin of Ethiopia. Four treatments for croplands (control, soil bund, Fanya juu, and soil bund reinforced with grass) and three treatments for non-croplands (control, exclosure, and exclosure with trenches) were investigated during the rainy seasons. The results showed that runoff and SL varied greatly depending on agro-ecology, land use type, and SLM practice. Seasonal runoff ranged from 52 to 810 mm in 2015 and 37 to 898 mm in 2016, whereas SL ranged from 0.07 to 39.67 t ha-1 and 0.01 to 24.70 t ha-1. The highest rates were observed from untreated grazing land in the midland agro-ecology, largely because of heavy grazing and the occurrence of intense rain events. Runoff and SL were both significantly lower (P < 0.05) in SLM plots than in control plots. On average, seasonal runoff was reduced by 11% to 68%, and SL by 38% to 94% in SLM plots. Soil bund reinforced with grass in croplands and exclosure with trenches in non-croplands were found to be the most effective SLM practices for reducing both runoff and SL. Integrating structural and vegetative measures was therefore found to be the best way to control soil erosion and its consequences. Additional investigation is needed in consideration of ecological succession and other possible effects of these types of integrated measures, for example, the effects on soil properties, biomass, and biodiversity.

13.
Environ Manage ; 61(5): 860-874, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29442141

RESUMEN

Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Modelos Teóricos , Suelo/normas , Movimientos del Agua , Conservación de los Recursos Hídricos/métodos , Sequías , Etiopía , Hidrología , Lluvia , Clima Tropical
14.
Sci Total Environ ; 574: 95-108, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27623531

RESUMEN

In the drought-prone Upper Blue Nile River (UBNR) basin of Ethiopia, soil erosion by water results in significant consequences that also affect downstream countries. However, there have been limited comprehensive studies of this and other basins with diverse agroecologies. We analyzed the variability of gross soil loss and sediment yield rates under present and expected future conditions using a newly devised methodological framework. The results showed that the basin generates an average soil loss rate of 27.5tha-1yr-1 and a gross soil loss of ca. 473Mtyr-1, of which, at least 10% comes from gully erosion and 26.7% leaves Ethiopia. In a factor analysis, variation in agroecology (average factor score=1.32) and slope (1.28) were the two factors most responsible for this high spatial variability. About 39% of the basin area is experiencing severe to very severe (>30tha-1yr-1) soil erosion risk, which is strongly linked to population density. Severe or very severe soil erosion affects the largest proportion of land in three subbasins of the UBNR basin: Blue Nile 4 (53.9%), Blue Nile 3 (45.1%), and Jema Shet (42.5%). If appropriate soil and water conservation practices targeted ca. 77.3% of the area with moderate to severe erosion (>15tha-1yr-1), the total soil loss from the basin could be reduced by ca. 52%. Our methodological framework identified the potential risk for soil erosion in large-scale zones, and with a more sophisticated model and input data of higher spatial and temporal resolution, results could be specified locally within these risk zones. Accurate assessment of soil erosion in the UBNR basin would support sustainable use of the basin's land resources and possibly open up prospects for cooperation in the Eastern Nile region.

15.
Environ Monit Assess ; 187(1): 4090, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25407989

RESUMEN

Unprecedented land use and land cover (LULC) changes in the Gilgel Tekeze catchment of the upper Nile River basin in Ethiopia may have far-reaching consequences for the long-term sustainability of the natural resources base. This study analyzed the dynamics and hydrologic effects of LULC changes between 1976 and 2003 as shown in satellite imagery. The effects of these LULC changes on the hydrologic response were investigated using the WetSpa model to estimate spatially distributed average annual evapotranspiration, surface runoff, and groundwater recharge. Digital image analysis revealed major increments of cultivated land and settlements of 15.4 and 9.9%, respectively, at the expense of shrubland and grazing lands. Population growth and the associated demand for land were found to be the major driving forces. The WetSpa simulation showed an increase in annual surface runoff of 101 mm and a decrease in groundwater recharge of 39 mm over the period 1976-2003. These results signify an increasing threat of moisture unavailability in the study area and suggest that appropriate land management measures under the framework of the integrated catchment management (ICM) approach are urgently needed.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrología , Agricultura/estadística & datos numéricos , Conservación de los Recursos Naturales , Ambiente , Etiopía , Crecimiento Demográfico , Ríos/química
16.
PLoS One ; 9(4): e93656, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699528

RESUMEN

The Great Lakes of East Africa are among the world's most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation). Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.


Asunto(s)
Ecosistema , Lagos , Clima
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA