Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 125: 856-864, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30557644

RESUMEN

Recovery difficulty and inactivation of laccases are major challenges that hamper their application in biotechnology. In this study, laccase was purified from Cyberlindnera fabianii using ion-exchange and gel filtration chromatography with homogeneity confirmed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Purified laccase of 52 kDa was immobilized on calcium and copper alginate beads by entrapment method. Free and immobilized enzymes were characterized, and efficiency of bisphenol A (BPA) degradation was determined. pH optima for free and immobilized laccases were 5.0 and 6.0, respectively. Ca and Cu alginate immobilized laccase (Ca-AIL and Cu-AIL) had optimum activity at 60 °C and 50 °C, respectively while free laccase (FL) was at 40 °C. Km and Vmax of FL, Ca-AIL and Cu-AIL were 0.032 mM and 15 mM/min, 0.078 mM and 6.98 mM/min, and 0.091 mM and 5.61 mM/min, respectively. Remarkably, immobilized laccases had higher operational stability than FL over 21 d at 4°C. Reusability of immobilized laccase was effective for 3 cycles with residual activity above 70%. Notably, Ca-AIL and Cu-AIL exhibited 71% and 65.5% BPA degradation efficiency on 14 d. Results reveal good kinetic parameters, improved thermal stability and enhanced reusability of immobilized laccase from C. fabianii with potentials for various industrial applications and bioremediation.


Asunto(s)
Compuestos de Bencidrilo/química , Enzimas Inmovilizadas/química , Lacasa/química , Fenoles/química , Saccharomycetales/química , Estabilidad de Enzimas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Cinética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA