Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 61(14): 1517-1530, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35759798

RESUMEN

Expansion of a polyglutamine (polyQ) domain within the first exon of the huntingtin (htt) protein is the underlying cause of Huntington's disease, a genetic neurodegenerative disorder. PolyQ expansion triggers htt aggregation into oligomers, fibrils, and inclusions. The 17 N-terminal amino acids (Nt17) of htt-exon1, which directly precede the polyQ domain enhances polyQ fibrillization and functions as a lipid-binding domain. A variety of post-translational modifications occur within Nt17, including oxidation of two methionine residues. Here, the impact of oxidation within Nt17 on htt aggregation both in the presence and absence of lipid membranes was investigated. Treatment with hydrogen peroxide (H2O2) reduced fibril formation in a dose-dependent manner, resulting in shorter fibrils and an increased oligomer population. With excessive H2O2 treatments, fibrils developed a unique morphological feature around their periphery. In the presence of total brain lipid vesicles, H2O2 impacted fibrillization in a similar manner. That is, oligomerization was promoted at the expense of fibril elongation. The interaction of unoxidized and oxidized htt with supported lipid bilayers was directly observed using in situ atomic force microscopy. Without oxidation, granular htt aggregates developed on the bilayer surface. However, in the presence of H2O2, distinct plateau-like regions initially developed on the bilayer surface that gave way to rougher patches containing granular aggregates. Collectively, these observations suggest that oxidation of methionine residues within Nt17 plays a crucial role in both the aggregation of htt and its ability to interact with lipid surfaces.


Asunto(s)
Enfermedad de Huntington , Peróxido de Hidrógeno , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Membrana Dobles de Lípidos/química , Metionina , Proteínas del Tejido Nervioso/metabolismo , Agregado de Proteínas
2.
Colloids Surf B Biointerfaces ; 206: 111969, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34246856

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disease caused by an extended polyglutamine (polyQ) domain within the first exon of the huntingtin protein (htt). PolyQ expansion directly invokes the formation of a heterogenous mixture of toxic htt aggregates, including fibrils and oligomers. While htt is a cytosolic protein, it also associates with numerous membranous surfaces within the cell, leading to altered organelle morphology and dysfunction. Here, the impact of macromolecular crowding on htt aggregation in bulk solution and at solid/liquid or membrane/liquid interfaces was investigated. Dextran, Ficoll, and polyethylene glycol (PEG) were used as crowding agents. In bulk solution, crowding enhanced the heterogeneity of non-fibrillar aggregate species formed in a crowder dependent manner. However, crowding agents interfered with the deposition of htt fibrils on mica, suggesting that a crowded aqueous phase influences the interaction of htt with interfaces. By use of in situ atomic force microcopy (AFM), the aggregation of htt directly at mica and bilayer interfaces was tracked. The predominate aggregates type observed to form at the mica interface was fibrillar, but oligomeric aggregates of various stabilities were also observed. Crowding in the aqueous phase suppressed deposition and formation of htt aggregates on mica. In contrast, the addition of crowders enhanced deposition of htt aggregates onto supported total brain lipid extract (TBLE) bilayers. Different crowding agents led to distinct htt aggregates on supported bilayers with unique morphological impact on bilayer integrity. Collectively, these observations point to the complexity of htt aggregation at interfaces and that crowding in the aqueous phase profoundly influences this process.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Membrana Dobles de Lípidos , Agregado de Proteínas
3.
Biochim Biophys Acta Biomembr ; 1863(10): 183663, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089719

RESUMEN

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract near the N-terminus of the huntingtin (htt) protein. Expanded polyQ tracts are prone to aggregate into oligomers and insoluble fibrils. Mutant htt (mhtt) localizes to variety of organelles, including mitochondria. Specifically, mitochondrial defects, morphological alteration, and dysfunction are observed in HD. Mitochondrial lipids, cardiolipin (CL) in particular, are essential in mitochondria function and have the potential to directly interact with htt, altering its aggregation. Here, the impact of mitochondrial membranes on htt aggregation was investigated using a combination of mitochondrial membrane mimics and tissue-derived mitochondrial-enriched fractions. The impact of exposure of outer and inner mitochondrial membrane mimics (OMM and IMM respectively) to mhtt was explored. OMM and IMM reduced mhtt fibrillization, with IMM having a larger effect. The role of CL in mhtt aggregation was investigated using a simple PC system with varying molar ratios of CL. Lower molar ratios of CL (<5%) promoted fibrillization; however, increased CL content retarded fibrillization. As revealed by in situ AFM, mhtt aggregation and associated membrane morphological changes at the surface of OMM mimics was markedly different compared to IMM mimics. While globular deposits of mhtt with few fibrillar aggregates were observed on OMM, plateau-like domains were observed on IMM. A similar impact on htt aggregation was observed with exposure to purified mitochondrial-enriched fractions. Collectively, these observations suggest mitochondrial membranes heavily influence htt aggregation with implication for HD.


Asunto(s)
Proteína Huntingtina/metabolismo , Membranas Mitocondriales/metabolismo , Mutación , Escherichia coli/metabolismo , Glutatión/metabolismo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo
4.
ACS Chem Neurosci ; 11(3): 328-343, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31880908

RESUMEN

Huntington's disease (HD), a genetic neurodegenerative disease, is caused by an expanded polyglutamine (polyQ) domain in the first exon of the huntingtin protein (htt). PolyQ expansion destabilizes protein structure, resulting in aggregation into a variety of oligomers, protofibrils, and fibrils. Beyond the polyQ domain, adjacent protein sequences influence the aggregation process. Specifically, the first 17 N-terminal amino acids (Nt17) directly preceding the polyQ domain promote the formation of α-helix-rich oligomers that represent intermediate species associated with fibrillization. Due to its propensity to form an amphipathic α-helix, Nt17 also facilitates lipid binding. Three lysine residues (K6, K9, and K15) within Nt17 can be SUMOylated, which modifies htt's accumulation and toxicity within cells in a variety of HD models. The impact of SUMOylation on htt aggregation and direct interaction with lipid membranes was investigated. SUMOylation of htt-exon1 inhibited fibril formation while promoting larger, amorphous aggregate species. These amorphous aggregates were SDS soluble but nonetheless exhibited levels of ß-sheet structure similar to that of htt-exon1 fibrils. In addition, SUMOylation prevented htt binding, aggregation, and accumulation on model lipid bilayers comprised of total brain lipid extract. Collectively, these observations demonstrate that SUMOylation promotes a distinct htt aggregation pathway that may affect htt toxicity.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/prevención & control , Lípidos de la Membrana/metabolismo , Amiloide/metabolismo , Humanos , Proteína Huntingtina/genética , Proteínas del Tejido Nervioso/metabolismo , Sumoilación
5.
Biochemistry ; 56(9): 1199-1217, 2017 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-28170216

RESUMEN

Several hereditary neurological and neuromuscular diseases are caused by an abnormal expansion of trinucleotide repeats. To date, there have been 10 of these trinucleotide repeat disorders associated with an expansion of the codon CAG encoding glutamine (Q). For these polyglutamine (polyQ) diseases, there is a critical threshold length of the CAG repeat required for disease, and further expansion beyond this threshold is correlated with age of onset and symptom severity. PolyQ expansion in the translated proteins promotes their self-assembly into a variety of oligomeric and fibrillar aggregate species that accumulate into the hallmark proteinaceous inclusion bodies associated with each disease. Here, we review aggregation mechanisms of proteins with expanded polyQ-tracts, structural consequences of expanded polyQ ranging from monomers to fibrillar aggregates, the impact of protein context and post-translational modifications on aggregation, and a potential role for lipid membranes in aggregation. As the pathogenic mechanisms that underlie these disorders are often classified as either a gain of toxic function or loss of normal protein function, some toxic mechanisms associated with mutant polyQ tracts will also be discussed.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Péptidos/química , Proteínas/química , Proteínas/metabolismo , Animales , Humanos , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA