Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207638

RESUMEN

Cissus quadrangularis is a succulent, perennial plant belonging to the family Vitaceae typically found in Asia and Africa's tropical and subtropical forest zones. It is an ancient medicinal plant, containing phytosterols, polyphenols, flavonoids, carbohydrates, and ascorbic acid. Due to the presence of phytosterols it plays a crucial role in bone fracture healing. However, due to the limited resources of these medicinal plants there is a need to search for a reservoir of biologically active metabolites. This medicinal property of the plants therefore may be attributed to the endophytic fungi within the plant. This study includes isolation of endophytic fungi from C. quadrangularis and the characterization of fungal extracts. Three endophytes were isolated namely Colletotrichum gloeosporioides, Colletotrichum siamense and Phoma sp. The qualitative analysis of targeted metabolites from Cissus quadrangularis stem and fungal extracts of all the three endophytes showed the presence of phytosterols. Methanol extracts of endophytes and C. quadrangularis plant exhibit significant antioxidant and the radical scavenging activity because of the presence of ß-carotene. The Ic50 value for stem and isolated endophytes was 5.748, 19.937, 7.00, and 6.493 respectively. This study will give further scope for studying the bone healing ability of phytosterol from the endophytic isolates of C. quadrangularis plant.

2.
PeerJ ; 12: e17679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011376

RESUMEN

Background: Onion thrips (Thrips tabaci) is a complex of cryptic species with subtle morphological differences and distinct genetic backgrounds; thus, species identification using traditional methods remains challenging. The existence of different haplotypes and genotypes within a species can significantly influence various aspects of its biology, including host preference, reproductive capacity, resistance to pesticides, and vector competence for plant viruses. Understanding the genetic diversity and population structure of cryptic species within T. tabaci will not only aid in the development of more effective control strategies tailored to specific genetic variants but also in monitoring population dynamics, tracking invasive species, and implementing quarantine measures to prevent the spread of economically damaging thrips biotypes. Methods: This study aims to explore intraspecies genetic diversity and molecular evolutionary relationships of the mitochondrial cytochrome oxidase gene subunit I (mtCOI) in T. tabaci populations from India. To capture diversity within the Indian T. tabaci populations, amplicon sequencing was performed for the thrips mtCOI gene from eight diverse localities in India. A total of 48 sequences retrieved for the mtCOI gene from the NCBI Nucleotide database were analysed. Results: Multiple insertions and deletions were detected at various genomic positions across the populations from different localities, with the highest variation observed in the 300-400 genome position range. Molecular diversity analyses identified 30 haplotypes within the population, with certain subpopulations exhibiting higher gene flow. Analysis of single nucleotide polymorphism patterns within the mtCOI gene across diverse Indian locales revealed significant intrapopulation genetic heterogeneity and its potential repercussions on gene functionality. Elevated F statistics (Fst) values in the northern-western subpopulations suggested high genetic variability, particularly evident in haplotype networks originating mainly from the northern region, notably Delhi. While most populations displayed stable and ancient evolutionary histories, thrips populations from northern, western, and north-eastern regions indicated rapid growth.


Asunto(s)
Variación Genética , Filogenia , Thysanoptera , Thysanoptera/genética , Animales , India/epidemiología , Variación Genética/genética , Cebollas/genética , Haplotipos/genética , Complejo IV de Transporte de Electrones/genética , Genética de Población
4.
Front Microbiol ; 14: 1146390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992933

RESUMEN

Insects possess beneficial and nuisance values in the context of the agricultural sector and human life around them. An ensemble of gut symbionts assists insects to adapt to diverse and extreme environments and to occupy every available niche on earth. Microbial symbiosis helps host insects by supplementing necessary diet elements, providing protection from predators and parasitoids through camouflage, modulation of signaling pathway to attain homeostasis and to trigger immunity against pathogens, hijacking plant pathways to circumvent plant defence, acquiring the capability to degrade chemical pesticides, and degradation of harmful pesticides. Therefore, a microbial protection strategy can lead to overpopulation of insect pests, which can drastically reduce crop yield. Some studies have demonstrated increased insect mortality via the destruction of insect gut symbionts; through the use of antibiotics. The review summarizes various roles played by the gut microbiota of insect pests and some studies that have been conducted on pest control by targeting the symbionts. Manipulation or exploitation of the gut symbionts alters the growth and population of the host insects and is consequently a potential target for the development of better pest control strategies. Methods such as modulation of gut symbionts via CRISPR/Cas9, RNAi and the combining of IIT and SIT to increase the insect mortality are further discussed. In the ongoing insect pest management scenario, gut symbionts are proving to be the reliable, eco-friendly and novel approach in the integrated pest management.

5.
BMC Microbiol ; 22(1): 324, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36581846

RESUMEN

For the burgeoning global population, sustainable agriculture practices are crucial for accomplishing the zero-hunger goal. The agriculture sector is very concerned about the rise in insecticide resistance and the Modern Environmental Health Hazards (MEHHs) that are problems for public health due to on pesticide exposure and residues. Currently, farming practices are being developed based on microbial bio-stimulants, which have fewer negative effects and are more efficient than synthetic agro-chemicals. In this context, one of the most important approaches in sustainable agriculture is the use of biocontrol microbes that can suppress phytopathogens and insects. Simultaneously, it is critical to comprehend the role of these microbes in promoting growth and disease control, and their application as biofertilizers and biopesticides, the success of which in the field is currently inconsistent. Therefore, editorial is part of a special issue titled "Biocontrol Strategies: An Eco-smart Tool for Integrated Pest and Disease Management" which focuses on biocontrol approaches that can suppress the biotic stresses, alter plant defense mechanisms, and offer new eco-smart ways for controlling plant pathogens and insect pests under sustainable agriculture.


Asunto(s)
Agricultura , Plantas , Animales , Insectos , Granjas , Agentes de Control Biológico , Control Biológico de Vectores
6.
Front Plant Sci ; 13: 857306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35481153

RESUMEN

Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.

7.
Pathogens ; 10(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34578118

RESUMEN

The root-endophytic fungus Piriformospora indica (=Serendipita indica) has been revealed for its growth-promoting effects and its capacity to induce resistance in a broad spectrum of host plants. However, the bioefficacy of this fungus had not yet been tested against any pathogen affecting onion (Allium cepa). In this study, the biocontrol potency of P. indica against onion leaf blight, an impacting disease caused by the necrotrophic fungal pathogen Stemphylium vesicarium, was evaluated. First, it was proved that colonisation of onion roots by P. indica was beneficial for plant growth, as it increased leaf development and root biomass. Most relevantly, P. indica was also effective in reducing Stemphylium leaf blight (SLB) severity, as assessed under greenhouse conditions and confirmed in field trials in two consecutive years. These investigations could also provide some insight into the biochemical and molecular changes that treatment with P. indica induces in the main pathways associated with host defence response. It was possible to highlight the protective effect of P. indica colonisation against peroxidative damage, and its role in signalling oxidative stress, by assessing changes in malondialdehyde and H2O2 content. It was also showed that treatment with P. indica contributes to modulate the enzymatic activity of superoxide dismutase, catalase, phenylalanine ammonia-lyase and peroxidase, in the course of infection. qPCR-based expression analysis of defence-related genes AcLOX1, AcLOX2, AcPAL1, AcGST, AcCHI, AcWRKY1, and AcWRKY70 provided further indications on P. indica ability to induce onion systemic response. Based on the evidence gathered, this study aims to propose P. indica application as a sustainable tool for improving SLB control, which might not only enhance onion growth performance but also activate defence signalling mechanisms more effectively, involving different pathways.

8.
PeerJ ; 8: e9824, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974094

RESUMEN

BACKGROUND: The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops. METHOD: In the present review, major omics approaches, and their progress, as well as potential applications in Allium crops, could be discussed in detail. RESULTS: Here, we have discussed the recent progress made in Allium research using omics technologies such as genomics, transcriptomics, micro RNAs, proteomics, metabolomics, and metagenomics. These omics interventions have been used in alliums for marker discovery, the study of the biotic and abiotic stress response, male sterility, organ development, flavonoid and bulb color, micro RNA discovery, and microbiome associated with Allium crops. Further, we also emphasized the integrated use of these omics platforms for a better understanding of the complex molecular mechanisms to speed up the breeding programs for better cultivars. CONCLUSION: All the information and literature provided in the present review throws light on the progress and potential of omics platforms in the research of Allium crops. We also mentioned a few research areas in Allium crops that need to be explored using omics technologies to get more insight. Overall, alliums are an under-studied group of plants, and thus, there is tremendous scope and need for research in Allium species.

9.
Bot Stud ; 60(1): 21, 2019 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-31494810

RESUMEN

BACKGROUND: Plumbagin is one of the pharmaceutically important biomolecule with anticancer potential. Among the plants reported to produce plumbagin, P. zeylanica topped the list. The plumbagin production is very slow with low yield and maximum 0.5% (of dry weight) was reported in P. zeylanica. To meet the increasing demand of the plumbagin at global level, the P. zeylanica are exploited at commercial level, which may pose serious threat on the germplasm of the plant populations. So, it is needed to enhance the contents of plumbagin in P. zeylanica using biotechnological approaches. Among the various methods used to enhance the contents of plumbagin in P. zeylanica, utilization of fungal endophytes to enhance the plumbagin contents is a widely accepted approach. As fungal endophytes have the potential to synthesize various secondary metabolites and also reported to influence the synthesis of the secondary metabolites in plants. In the present study, an attempt was made to assess the effect of fungal endophytes of the Plumbago zeylanica L. on enhancement of plumbagin contents at in vivo level. RESULTS: Total 3 fungal endophytes were recorded from the roots of P. zeylanica collected from Khadki, Pune. The fungal endophytes were identified at morphological and molecular level. After 1 year of the treatment with fungal endophytes, significant enhancement of plumbagin was recorded in the roots of the P. zeylanica. Plumbagin contents in each were quantified against the standard plumbagin by employing LCMS-MS technique. Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with the treatment of Alternaria   sp. (Isolate-3) in the roots of the P. zeylanica compared to control. CONCLUSION: Among the three fungal endophytes, the maximum enhancement of plumbagin content (122.67%) was reported with Alternaria sp. (Isolate 3) in the roots of the pot-grown plants of P. zeylanica at in vivo level.

10.
Sci Rep ; 9(1): 5390, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30926843

RESUMEN

Polythene is the most widely used plastic around the globe. Among the total plastic waste generated, polythene contributes the maximum share (64%). Various strategies/methods are being utilized to deal with the increasing rate of plastic waste, but among all the methods, bioremediation is regarded as the ecofriendly and widely accepted method. In the current investigation, we have attempted to discover the elite polythene deteriorating fungi (isolated from the rhizosphere soil of Avicennia marina). From 12 different eco-geographical locations along the West Coast of India, total 109 fungal isolates were recorded. The polythene deteriorating fungi were screened at varied pH (3.5, 7 and 9.5) based on changes in weight and tensile strength of the treated polythene at ambient temperature with continuous shaking for 60 days. BAYF5 isolate (pH 7) results in maximum reduction in weight (58.51 ± 8.14) whereas PNPF15 (pH 3.5) recorded highest reduction in tensile strength (94.44 ± 2.40). Surprisingly, we have also reported weight gain, with highest percent weight gain (28.41 ± 6.99) with MANGF13 at pH 9.5. To test the reproducibility of the results, the elite polythene degrading fungal isolates based on weight loss and reduction in tensile strength were only used for repetition experiment and the results based on the reduction in tensile strength were found only reproducible. Polythene biodegradation was further confirmed using Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The most efficient polythene deteriorating fungal isolates were identified as Aspergillus terreus strain MANGF1/WL and Aspergillus sydowii strain PNPF15/TS using both morphological keys and molecular tools.


Asunto(s)
Avicennia/metabolismo , Hongos/metabolismo , Polietileno/metabolismo , Biodegradación Ambiental
11.
Sci Rep ; 9(1): 1599, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733458

RESUMEN

Polythene-degradation products (PE-DPs) produced due to two most efficient polythene degrading fungal isolates (Aspergillus terreus strain MANF1/WL and Aspergillus sydowii strain PNPF15/TS) after 60 days of incubation at ambient temperature with continuous shaking were analyzed by employing GC-MS method. Total 24 PE-DPs were recorded in total 4 samples i) control (pH 3.5), ii) Treatment of Aspergillus terreus strain MANF1/WL (pH 3.5), iii) control (pH 9.5) and iv) Treatment of Aspergillus sydowii strain PNP15/TS (pH 9.5). To check the deleterious status of PE-DPs using both the elite fungal isolates at in vitro level, two living systems (Sorghum and Tiger shark) were used. The percent germination rate of sorghum seeds were found unaffected with PE-DPs of both elite fungi. PE-DPs of both the fungal isolates exhibited maximum germination index at 50%. Whereas, highest elongation inhibition rate (34.75 ± 7.10) was reported with PE-DPs of Aspergillus terreus strain MANF1/WL. In case of animals system, no mortality of the Tiger sharks was documented after fifteen days of the treatment.


Asunto(s)
Aspergillus/metabolismo , Contaminantes Ambientales/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Polietileno/metabolismo , Biodegradación Ambiental , Contaminantes Ambientales/aislamiento & purificación , Polietileno/aislamiento & purificación , Sorghum/metabolismo
12.
Environ Sci Pollut Res Int ; 23(14): 14621-35, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27072028

RESUMEN

Due to high durability, cheap cost, and ease of manufacture, 311 million tons of plastic-based products are manufactured around the globe per annum. The slow/least rate of plastic degradation leads to generation of million tons of plastic waste per annum, which is of great environmental concern. Of the total plastic waste generated, polythene shared about 64 %. Various methods are available in the literature to tackle with the plastic waste, and biodegradation is considered as the most accepted, eco-friendly, and cost-effective method of polythene waste disposal. In the present study, an attempt has been made to isolate, screen, and characterize the most efficient polythene degrading bacteria by using rhizosphere soil of Avicennia marina as a landmark. From 12 localities along the west coast of India, a total of 123 bacterial isolates were recorded. Maximum percent weight loss (% WL; 21.87 ± 6.37 %) was recorded with VASB14 at pH 3.5 after 2 months of shaking at room temperature. Maximum percent weight gain (13.87 ± 3.6 %) was reported with MANGB5 at pH 7. Maximum percent loss in tensile strength (% loss in TS; 87.50 ± 4.8 %) was documented with VASB1 at pH 9.5. The results based on the % loss in TS were only reproducible. Further, the level of degradation was confirmed by scanning electron microscopic (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In SEM analysis, scions/crakes were found on the surface of the degraded polythene, and mass of bacterial cell was also recorded on the weight-gained polythene strips. Maximum reduction in carbonyl index (4.14 %) was recorded in untreated polythene strip with Lysinibacillus fusiformis strain VASB14/WL. Based on 16S ribosomal RNA (rRNA) gene sequence homology, the most efficient polythene degrading bacteria were identified as L. fusiformis strainVASB14/WL and Bacillus cereus strain VASB1/TS.


Asunto(s)
Avicennia/microbiología , Bacterias/metabolismo , Polietileno/metabolismo , Rizosfera , Biodegradación Ambiental , India , Plásticos/metabolismo , Eliminación de Residuos/métodos , Suelo , Microbiología del Suelo , Espectroscopía Infrarroja por Transformada de Fourier
13.
Environ Sci Pollut Res Int ; 23(11): 10733-10741, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26888528

RESUMEN

Polythene degradation leads to the production of various by-products depending upon the type of degradation process. The polythene degradation products (PEDP) in the culture supernatant of the two bacteria (Lysinibacillus fusiformis strain VASB14/WL and Bacillus cereus strain VASB1/TS) were analyzed with GC-MS technique. The major by-products in the PEDP in the culture supernatant of L. fusiformis strain VASB14/WL (1,2,3,4 tetra methyl benzene) and B. cereus strain VASB1/TS (1,2,3 trimethyl benzene, 1 ethyl 3,5-dimethyl benzene, 1,4 di methyl 2 ethyl benzene, and dibutyl phthalate) dissolved in diethyl ether were recorded. To assess the environmental applicability of polythene degradation using L. fusiformis strain VASB14/WL and B. cereus strain VASB1/TS at in vitro level. The effect of PEDP produced after 2 months of regular shaking at room temperature on both plants and animal system was studied. No significant decrease in the percent seed germination was recorded with the PEDP of both the bacteria. PEDP produced by L. fusiformis strain VASB14/WL did not report any significant change in germination index (GI) at 10 and 25 %, but least GI (39.66 ± 13.94) was documented at 50 % concentration of PEDP. Highest elongation inhibition rate (53.83 ± 15.71) of Sorghum was also recorded with L. fusiformis and at the same concentration.


Asunto(s)
Bacillaceae/metabolismo , Derivados del Benceno/metabolismo , Dibutil Ftalato/metabolismo , Polietileno/metabolismo , Animales , Derivados del Benceno/toxicidad , Biodegradación Ambiental , Dibutil Ftalato/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Germinación/efectos de los fármacos , Dosificación Letal Mediana , Polietileno/toxicidad , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Tiburones , Sorghum/efectos de los fármacos , Sorghum/crecimiento & desarrollo , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA