Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 15: 115-125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38293272

RESUMEN

The escalating release of zinc oxide nanoparticles (ZnO NPs) into the environment poses a substantial threat, potentially leading to increased concentrations of zinc (Zn) in the soil and subsequent phytotoxic effects. This study aimed to assess the effects of ZnO NPs on Raphanus sativus (R. sativus) concerning its tolerance levels, toxicity, and accumulation. ZnO NPs were synthesized by the wet chemical method and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The effect of ZnO NPs (70 nm) on R. sativus grown in coir was evaluated. The application of 1,000 mg/L of ZnO NPs resulted in a significant increase (p < 0.05) in soluble protein content, carbohydrates, chlorophyll a (Chl-a), chlorophyll b (Chl-b), total chlorophylls, carotenoids, and antioxidants by 24.7%, 58.5%, 38.0%, 42.2%, 39.9%, 11.2%, and 7.7%, respectively. Interestingly, this dose had no impact on the indole acetic acid (IAA) content. Conversely, the use of 2,000 mg/L of ZnO NPs in the same medium led to a significant reduction (p < 0.05) in soluble protein content by 23.1%, accompanied by a notable increase in IAA by 31.1%, indicating potential toxicity. The use of atomic absorption spectroscopy confirmed the internalization of zinc in seedlings, with a statistically significant increase (p < 0.05). In control plants without ZnO NPs, Zn concentration was 0.36 mg/g, while at the highest ZnO NPs tested dose of 10,000 mg/L, it significantly rose to 1.76 mg/g, causing leaf chlorosis and stunted seedling growth. This suggests potential health risks related to Zn toxicity for consumers. Given the adverse effects on R. sativus at concentrations above 1000 mg/L, caution is advised in the application and release of ZnO NPs, highlighting the importance of responsible practices to mitigate harm to plant life and consumer health. The study demonstrated the tolerance of R. sativus to high Zn levels, classifying it as a Zn-tolerant species.

2.
Nanoscale ; 15(4): 1824-1834, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36602164

RESUMEN

The interface between the polymer and nanoparticle has a vital role in determining the overall dielectric properties of a dielectric polymer nanocomposite. In this study, a novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles surface modified by hydrogen plasma treatments was successfully prepared with different weight percentages (10%, 20% and 30%) of hydrogenated TiO2. Internal structure of H plasma treated TiO2 nanoparticles (H-TiO2) and the intermolecular interactions and morphology within the polymer nanocomposites were analysed. H-TiO2/CRS thin films on SiO2/Si wafers were used to form metal-insulator-metal (MIM) type capacitors. Capacitances and loss factors in the frequency range of 1 kHz to 1 MHz were measured. At 1 kHz H-TiO2/CRS nanocomposites exhibited ultra-high dielectric constants of 80, 118 and 131 for nanocomposites with 10%, 20% and 30% weight of hydrogenated TiO2 respectively, significantly higher than values of pure CRS (21) and TiO2 (41). Furthermore, all three H-TiO2 /CRS nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10-6 A cm-2-10-7 A cm-2). Leakage was studied using conductive atomic force microscopy (C-AFM) and it was observed that the leakage is associated with H-TiO2 nanoparticles embedded in the CRS polymer matrix. Although, modified interface slightly reduces energy densities compared to pristine TiO2/CRS system, the capacitance values for H-TiO2/CRS-in the voltage range of -2 V to 2 V are very stable. Whilst H-TiO2/CRS possesses ultra-high dielectric constants (>100), this study reveals that the polymer nanoparticle interface has a potential influence on dielectric behaviour of the composite.

3.
ChemSusChem ; 15(3): e202102445, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-34939741

RESUMEN

A 2 : 1 urea ⋅ adipic acid cocrystal was obtained in two polymorphic forms (Form I reported earlier, and Form II synthesized in this study) using mechanochemistry as well as solution crystallization. Lower solubility and leaching study showed the newly synthesized urea ⋅ adipic acid 2 : 1 cocrystal to be an efficient sustained-release nitrogen fertilizer compared to commercially available urea.


Asunto(s)
Nitrógeno , Urea , Adipatos , Preparaciones de Acción Retardada , Solubilidad
4.
Nanomaterials (Basel) ; 11(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801046

RESUMEN

A novel antimicrobial formulation based on carboxymethylcellulose (CMC) spray-coated Cu2+ intercalated montmorillonite (MMT) nanocomposite material was prepared and its morphology, internal structure, and bonding interactions were studied. Meanwhile, the antibacterial efficacy and release behavior of Cu2+ was also determined. PXRD patterns indicated the intercalation of Cu2+, while FTIR spectra and TGA traces confirmed the association of Cu-MMT with CMC. SEM study revealed the improvement of nanocomposites by CMC, without disturbing the clay structure. TEM and EDAX studies indicated the distribution of Cu (copper) throughout the composite. In vitro antibacterial assays performed with Erwinia carotovora revealed effective bacterial growth suppression, indicating the potential of this material in controlling soft rot of potatoes (Solanum tuberosum); also observed was a connection between growth inhibition and concentration of CMC spray coats indicating a positive relationship between Cu2+ release and concentration of the CMC coatings. The activity pattern of the nanocomposite displayed a significant degree of sustained-release behavior.

5.
Chemosphere ; 236: 124384, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545191

RESUMEN

This study evaluates a novel adsorbent for ciprofloxacin (CPX) removal from water using a composite derived from municipal solid waste biochar (MSW-BC) and montmorillonite (MMT). The composite adsorbent and pristine materials were characterized using powder X-Ray Diffraction (PXRD), Fourier-Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscope (SEM) before and after the adsorption. Batch experiments were conducted to study the mechanisms involved in the adsorption process. Ciprofloxacin sorption mechanisms were interpreted in terms of its pH-dependency and the distribution coefficients. The SEM images confirmed the successful binding of MMT onto the MSW-BC through flaky structure along with a porous morphology. Encapsulation of MMT onto MSW-BC was exhibited through changes in the basal spacing of MMT via PXRD analysis. Results from FTIR spectra indicated the presence of functional groups for both pristine materials and the composite that were involved in the adsorption reaction. The Hill isotherm model and pseudo-second-order and Elovich kinetic models fitted the batch sorption data, which explained the surface heterogeneity of the composite and cooperative adsorption mechanisms. Changes made to the MSW-BC through the introduction of MMT, enhanced the active sites on the composite adsorbent, thereby improving its interaction with ionizable CPX molecules giving high sorption efficiency.


Asunto(s)
Antibacterianos/aislamiento & purificación , Bentonita/química , Carbón Orgánico/química , Ciprofloxacina/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Antibacterianos/química , Ciprofloxacina/química , Cinética , Residuos Sólidos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación
6.
Sci Total Environ ; 696: 133922, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31446288

RESUMEN

In this paper, we investigate the release of heavy metals from sludge produced from an electrical industry using both organic and inorganic acids. Single and sequential extractions were conducted to assess heavy metals in different phases of the sludge. Metal release from sludge was investigated in the presence of three inorganic acids (nitric, sulfuric, and phosphoric) and three organic acids (acetic, malic, and citric) at concentrations ranging from 0.1 to 2.0 mol L-1. Sequential extraction indicated the presence of Cu primarily in the carbonate fraction, Pb in the residual fraction, and Ni in the FeMn oxide fraction. The cumulative release rates of heavy metals (i.e., Pb, Cu, and Ni) by 1.0 mol L-1 of acid increased with the use of the following acids in the order of: malic < sulfuric < acetic < phosphoric < citric < nitric. Acetic acid exhibited the highest release of Cu, at a rate of 72.62 × 10-11 mol m-2 s-1 at pH 1, and malic acid drove the release of Pb at a maximum rate of 3.90 × 10-11 mol m-2 s-1. Meanwhile, nitric acid provided the maximum rate of Ni release (0.23 × 10-11 mol m-2 s-1) at pH 1. The high rate of metal release by organic acids is explained through ligand-promoted mechanisms that enhance the release of metal ions from the sludge. The results from our study emphasize that an understanding of the metal release mechanism is key to selecting the optimal acid for the maximum recovery of heavy metals.

7.
J Environ Manage ; 236: 428-435, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769252

RESUMEN

This study investigates the adsorption of ciprofloxacin (CPX) onto a municipal solid waste derived biochar (MSW-BC) and a composite material developed by combining the biochar with bentonite clay. A bentonite-MSW slurry was first prepared at 1:5 ratio (w/w), and then pyrolyzed at 450 °C for 30 min. The composite was characterized by scanning electron microscopy (SEM), Powder X-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy before and after CPX adsorption. Batch experiments were conducted to assess the effect of pH, reaction time and adsorbate dosage. The SEM images confirmed successful modification of the biochar with bentonite showing plate like structures. The PXRD patterns showed changes in the crystalline lattice of both MSW-BC and the composite before and after CPX adsorption whereas the FTIR spectra indicated merging and widening of specific bands after CPX adsorption. The optimum CPX adsorption was achieved at pH 6, and the maximum adsorption capacity of the composite calculated via isotherm modeling was 190 mg/g, which was about 40% higher than the pristine MSW-BC. The Hill isotherm model along with pseudo-second order and Elovich kinetic models showed the best fit to the adsorption data. The most plausible mechanism for increased adsorption capacity is the increased active sites of the composites for CPX adsorption through induced electrostatic interactions between the functional groups of the composite and CPX molecules. The added reactive surfaces in the composite because of bentonite incorporation, and the intercalation of CPX in the clay interlayers improved the adsorption of CPX by the biochar-bentonite composite compared to the pristine biochar. Thus, MSW-BC-bentonite composites could be considered as a potential material for remediating pharmaceuticals in aqueous media.


Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Carbón Orgánico , Ciprofloxacina , Concentración de Iones de Hidrógeno , Cinética , Residuos Sólidos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA