Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574501

RESUMEN

Currently, sea turtle habitats are being altered by climate change and human activities, with habitat loss posing an urgent threat to Indian sea turtles. Thus, the objective of this study is to analyze the dynamic shoreline alterations and their impacts on Olive Ridley Sea Turtle (ORT) nesting sites in Gahirmatha Marine Wildlife Sanctuary from 1990 to 2022. Landsat satellite images served as input datasets to assess dynamic shoreline changes. This study assessed shoreline alterations and their rates across 929 transects divided into four zones using the Digital Shoreline Analysis System (DSAS) software. The results revealed a significant 14-km northward shift in the nesting site due to substantial coastal erosion, threatening the turtles' Arribada. This study underscores the need for conservation efforts to preserve nesting environments amidst changing coastal landscapes, offering novel insights into the interaction between coastal processes and marine turtle nesting behaviors.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Comportamiento de Nidificación , Tortugas , Animales , Tortugas/fisiología , India , Monitoreo del Ambiente , Cambio Climático
2.
Environ Sci Pollut Res Int ; 30(45): 100265-100281, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37624499

RESUMEN

Studies related to seagrass ecology, conservation, and management are sparse and highly biased in India. Even though the geographical distribution of seagrass is diverse in India, about 74% of the scientific publications have been made from Palk Bay and the Gulf of Mannar from Tamilnadu. Chilika, the largest lagoon in Asia, harbors the second largest seagrass meadow in India 22% of the total. The lagoon acts as a potential blue carbon stock and helps in thriving a rich floral and faunal biodiversity. However, the critical role of seagrass in this unique lagoon ecosystem is still poorly understood. This review is aimed at synthesizing the published literature about seagrass in Chilika. We believe this information would encourage more in-depth and diverse seagrass studies in the region and identify future priority areas for research. A total of seven species have been recorded from 169.2 sq. km of seagrass patch in Chilika. For the last two decades, no significant signs of decline in seagrass beds from this lagoon have been reported. Still, various natural and anthropogenic stressors could put this unique ecosystem under severe stress. Moreover, lax enforcement of existing legislation and a general lack of knowledge among the stakeholders about their ecosystem services can be significant impediments to their conservation. More targeted research on Chilika seagrass in changing climate regimes and their sustainable intensification is the need of the hour.


Asunto(s)
Biodiversidad , Ecosistema , India , Ecología , Asia
3.
Sci Total Environ ; 858(Pt 1): 159625, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280061

RESUMEN

Odisha's coastline supports various development activities that are critical to the state and national economy, such as oil and gas, ports and harbors, power plants, fishing, tourism, and mining that continues to not only detriment the coastal ecology but also affect the overall shoreline morphodynamics. The morphological changes are complicated processes involving both natural and human-induced drivers, but it is critical to understand how recent development activities further impact beach morphodynamics and shoreline dynamicity. The study analyzes the overall shoreline morphodynamics in response to the recent development of port and other related infrastructure for annual and decadal scale using two-dimensional (2-D) shoreline changes along with detailed 3-D beach profile volumetric changes for different studied zones along the Gopalpur coast. The results reveal that nearly all studied zones of the Gopalpur shoreline, Zone-4 (EPR = -05.64 m a-1 and LRR = -04.25 m a-1), Zone-3 (EPR = -04.51 m a-1 and LRR = -07.01 m a-1) and Zone-1 (EPR = -2.85 m a-1 and LRR = -01.46 m a-1), experienced erosion between 2010 and 2020 except Zone-2 (EPR = 24.31 m a-1 and LRR = 25.96 m a-1), which showed overall sign of deposition. The interannual shoreline analysis depicted that Zone-1 (tourist beach area) remained almost stable, Zone-2 (south of the breakwater of Gopalpur Port) showed accretion trends, Zone-4 (north side of the port) dominantly showed an erosion pattern, whereas Zone-3 (port area) showed a high level of uncertainty in the context of erosional or deposition trends. Calculated volumetric loss along the surveyed 3-D beach profiles supports these 2-D changes for all the studied zones. The results showed substantial changes in coastal morphodynamics in different studied zones of the Gopalpur region and severe erosion along its northern segment of the constructed coastal infrastructure. These findings can potentially promote effective coastal zone management and prevent further deterioration along the Gopalpur coast in future.


Asunto(s)
Industria de la Construcción , Monitoreo del Ambiente , Humanos , India , Erosión del Suelo
4.
Sci Total Environ ; 807(Pt 2): 150769, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34624284

RESUMEN

The long- to short-term morphodynamic response in low-lying coastal wetlands raises serious concerns worldwide about the loss of their biodiversity and ecological ramifications due to change in tidal amplitude and cyclonic events. One such place worth studying is Chilika lake, India, a prominent Ramsar site, the largest brackish water lagoon in Asia, and the second-largest coastal lagoon in the world. It experiences frequent cyclone landfalls and strong littoral drift that tends to open/close the tidal inlet. The goal of this study was to analyze the response of slow onset events such as long- (1952-2020) to short-term (~annual scale from 1989 to 2020) tidal inlet movement, shoreline change (1990-2020 with almost every five-year interval), spit morphodynamics (~annual scale from 1989 to 2020) on ecological ramification in Chilika lake as well as the implications of sudden onset event such as cyclonic landfall. In this study, we used the Digital Shoreline Change Analysis System (DSAS) to compute the statistics of shoreline change rate by calculating end point rate (EPR) values for short-term shoreline change (1990, 1995, 2000, 2005, 2011, 2016, and 2020) and weighted linear regression (WLR) for long-term shoreline change (1990-2020). The results show that Chilika lake experienced both erosion and accretion processes with a remarkably high erosion rate of 19.87 m year-1 and accretion of 16.91 m year-1 during a long-term scale (1990-2020). The average erosion and accretion rates were 2.25 m year-1 and 4.67 m year-1, respectively, during the past three decades (1990-2020). The short-term analysis suggests that the highest mean erosion of 4.37 m year-1 occurred during 2005-2011, mainly due to cyclonic storms, reduction in sediment discharge, and lunar eclipse, which induced tide with very high amplitude in August 2008. Overall, the annual scale analysis of tidal inlet shows a shifting trend towards the northward side even after the artificial opening of an inlet in 2000. It can be ascribed mainly to the prevalent direction of longshore drift along this coast. This study observed that the landfall of cyclones significantly affects the spit morphodynamics and opening of the tidal inlet, which defines the inflow of the seawater into the lagoon and further substantial impacts on the ecological ramification. The current study's methodology can be extended to comprehend the response of long- to short-term changes of the tidal inlet, shoreline, and spit morphodynamics on the ecological ramification of coastal lagoons worldwide along with impacts of sudden-onset events caused by cyclonic landfall.


Asunto(s)
Tormentas Ciclónicas , Humedales , Bahías , India , Lagos
5.
J Environ Manage ; 302(Pt B): 114067, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34781051

RESUMEN

Worldwide mining activities are one of the major anthropogenic activities that have caused high forest cover loss (FCL). In this study, we have quantified FCL in Odisha State due to mining activities analyzing Hansen Global Forest Change (HGFC) time series data for the period of 2001-2019 in Google Earth Engine platform. Our analysis suggests that Nabarangpur, Puri, Kendrapara, and Kalahandi districts lost more than 20% of their forest cover during this period. Rayagada and Koraput were the top two districts that recorded the highest FCL with mean change rates of 13.81 km2/year and 7.17 km2/year, respectively. The results point out that mining operations have grown in recent years in Odisha State, and the increase in these activities has contributed to the increase in FCL. This study offers a cost-effective methodology to monitor FCL in mining areas which will eventually contribute to the protection of forest biodiversity and forest dwelling tribal population.


Asunto(s)
Conservación de los Recursos Naturales , Tecnología de Sensores Remotos , Efectos Antropogénicos , Monitoreo del Ambiente , Bosques , India
6.
Mar Pollut Bull ; 172: 112881, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34454383

RESUMEN

In this study, we have analyzed how geo-ecological cues for endangered Olive Ridley turtles' mass nesting behavior got modified by impact of four severe cyclones during 2010-2019 that made landfall in the vicinity of Rushikulya estuary, which is one of the largest mass nesting congregation (arribada) sites in the world. Analyzing last 10 years of shoreline dynamics, we show that even the slightest modification in beach morphology influenced their nesting behavior in Rushikulya rookery. Shoreline change analysis showed periodic phases of high/low erosion and the northward longshore sediment movement, which becomes impeded by the southern spit, the length of which increased by about 1800 m. During the analyzed period, the nesting behavior of Olive Ridley turtle was greatly influenced by changes in land use and land cover pattern around the Rushikulya rookery. Such reductions in tree cover and marshy land areas were majorly driven by anthropogenic activities and extreme weather events, such as cyclones. We also report increased mortality of turtles, no or false mass nesting events due to significant loss and/or erosion of the nesting sites due to cyclones. The results indicate that conservation of Olive Ridley turtles should be more holistic, or ecosystem centric, rather than species centric. It is important to maintain the ecological integrity of their habitat for highly synchronized mass nesting event and eventually their survival.


Asunto(s)
Tortugas , Animales , Señales (Psicología) , Ecosistema , Estuarios , India , Comportamiento de Nidificación
7.
Sci Total Environ ; 770: 145235, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33513491

RESUMEN

Cyclones can produce a wide variety of short-term and long-term ecological impacts on coastal lagoons depending on cyclone's physical-meteorological characteristics and the lagoon's geographic, geomorphic, and bathymetric characteristics. Here, we theorized that in monsoon regulated tropical coastal lagoons, another important factor that could determine the impact of a cyclone is the landfall season or time of the year with reference to the monsoon season. We analyzed the impact of two cyclones which made landfall near Chilika, Asia's largest brackish water lagoon in different seasons, Cyclone Fani and Titli before and after the monsoon season. We compared field measured and satellite-derived water quality parameters including nutrient, salinity, water temperature, transparency, Chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) before and after the cyclones. We found that although both the cyclones were of similar intensities, after their land interaction, their impact on the lagoon's water quality was contrasting. The post-monsoon cyclone produced a substantial increase in total nitrogen (TN) and total phosphorous (TP), a large drop in salinity, CDOM, and Chl-a. In contrast, after the pre-monsoon cyclone, TN and TP did not show any such hike, no substantial change in salinity and CDOM either, and only a slight increase in Chl-a was observed. We found that the controlling factor in determining the impact of a cyclone is the rate and duration of freshwater discharge to the lagoon, which is normally a strong pulse for pre-monsoon and a continued high flow for post-monsoon cyclones. We conclude that the antecedent conditions of the lagoon and the watershed at the time of a cyclone's landfall is a key criterion in determining the impact. The combined use of satellite data and field data was proved critical to capture the overall impact of cyclones on the hydrological characteristics of the monsoon-regulated coastal lagoon.

8.
J Environ Monit ; 13(3): 614-20, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21246149

RESUMEN

An in vitro study was carried out to understand the effects of salinity shock and variation in pH on phytoplankton communities in a tropical freshwater system of the Godavari River (a major peninsular river in India). The distributions of, and variations in, phytoplankton communities were assessed by quantitative determination of their class specific marker pigments, using HPLC. Subtle changes in salinity of the freshwater by one practical salinity unit (PSU) completely removed green algae from the system and allowed the cyanobacteria to come into dominance. The cyanobacteria were found to tolerate higher osmotic stress until the salinity reached a PSU of 16. The higher salinity tolerance range of the cyanobacteria was attributed to the enhanced synthesis of zeaxanthin as protective xanthophylls against the osmotic stress. However, the effects of changing pH were not as dramatic as salinity where the green algae and the cyanobacteria from the same freshwater system showed a considerable acclimation towards the fluctuating pH. These findings are environmentally relevant to understand the likely impact of salt water intrusion and pH variation on phytoplankton communities in a tropical freshwater system.


Asunto(s)
Ecosistema , Fitoplancton/fisiología , Pigmentos Biológicos/análisis , Ríos , Salinidad , Chlorophyta/fisiología , Cromatografía Líquida de Alta Presión , Cianobacterias/fisiología , Concentración de Iones de Hidrógeno , India , Clima Tropical
9.
Chemosphere ; 80(5): 548-53, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20493512

RESUMEN

Stress and toxicity of four biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in Godavari River (a tropical freshwater system) were studied to understand the fate of phytoplankton of freshwater if it receives metal contaminated water imposed by these four metals. Shift in community structure of phytoplankton and their different tolerance levels for different metals were also investigated. It was found that the variation of metal concentrations at lower level (1x10(-9) to 1x10(-8)M) did not show a dramatic change in the total biomass or concentrations of the pigment markers. At concentration of 1x10(-7)M of metal, Cu acted as a nutrient and helped to increase the biomass followed by Co, Ni and Zn. The variation in biomass in the freshwater system under exposure to different metals at high concentration of 1x10(-6)M indicates that Cu had strongest interactions with biotic ligand and was taken up by phytoplankton and acted as the most toxic metal followed by Zn, Co and Ni. Phytoplankton communities in Godavari River have different tolerance levels for different metals. Cu and Zn were found to be lethal at high concentration for both green algae and cyanobacteria. Cyanobacteria were found to be very sensitive to slight variation in Ni concentration and Co was found to be less toxic than Cu and Zn even at high exposed concentration.


Asunto(s)
Fitoplancton/efectos de los fármacos , Elementos de Transición/toxicidad , Contaminantes Químicos del Agua/toxicidad , Cromatografía Líquida de Alta Presión , Cobalto/toxicidad , Cobre/toxicidad , Monitoreo del Ambiente/métodos , Níquel/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fitoplancton/química , Fitoplancton/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Ríos/química , Clima Tropical , Zinc/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA