Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(21): 21923-21934, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37917940

RESUMEN

Graphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells. A detailed comparison between simulation and experimental adsorption data reveals that the flake surface charge drives the water adsorption mechanism at low RH when the membrane topology is still disordered and the internal pores are small and asymmetric. As the membrane is exposed to higher RH (80%), the flake acquires more surface charge as more oxide groups deprotonate, and the pores grow in size, yet maintain their disordered geometry. Only for very high relative humidity (98%) does the membrane undergo structural changes. At this level of humidity, the pores in the membrane become slit-like but the flake surface charge remains constant. Our results unveil a very complex mechanism of swelling and show that a single molecular model cannot fully capture the ever-changing chemistry and morphology of the membrane as it swells. Our computational procedure provides the first atomically resolved insight into the GO membrane structure of experimental samples.

2.
Dalton Trans ; 52(41): 15131, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37815825

RESUMEN

Correction for 'Synthesis and characterization of heterometallic rings templated through alkylammonium or imidazolium cations' by Rajeh Alotaibi et al., Dalton Trans., 2023, 52, 7473-7481, https://doi.org/10.1039/D3DT00982C.

3.
Dalton Trans ; 52(22): 7473-7481, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37194350

RESUMEN

We report the synthesis and structural characterization of a series of heterometallic rings templated via alkylammonium or imidazolium cations. The template and preference of each metal's coordination geometry can control the structure of heterometallic compounds, leading to octa-, nona-, deca-, dodeca-, and tetradeca-metallic rings. The compounds were characterized by single-crystal X-ray diffraction, elemental analysis, magnetometry, and EPR measurements. Magnetic measurements show that the exchange coupling between metal centres is antiferromagnetic. EPR spectroscopy shows that the spectra of {Cr7Zn} and {Cr9Zn} have S = 3/2 ground states, while the spectra of {Cr12Zn2} and {Cr8Zn} are consistent with S = 1 and 2 excited states. The EPR spectra of {(ImidH)-Cr6Zn2}, {(1-MeImH)-Cr8Zn2}, and {(1,2-diMeImH)-Cr8Zn2} include a combination of linkage isomers. The results on these related compounds allow us to examine the transferability of magnetic parameters between compounds.

4.
Nano Lett ; 22(15): 6268-6275, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35857927

RESUMEN

Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 °C in an inert atmosphere. Its superconducting transition (Tc) is found at 2.6 K, exceeding the Tc of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.

5.
Inorg Chem ; 60(20): 15675-15685, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34613713

RESUMEN

A family of heterometallic rings [Me4N]2[CrIII6MII2F8(O2CtBu)16] is reported using tetramethylammonium hydroxide pentahydrate as the source of a template, where M = Zn, Mn, Ni, and Co. The metal cores are octagons with metal-metal edges bridged by one fluoride and two carboxylate ligands. The divalent metal ions are found ordered at positions 1 and 5 in the octagon. The tetramethylammonium cations are above and below the metal plane of the ring in the crystal structure. Magnetic studies show antiferromagnetic coupling between the paramagnetic metal ions present, leading to paramagnetic ground states in each case. 1H NMR spectroscopy confirms that the structure of the {CrIII6CoII2} ring exists in solution, and electron paramagnetic resonance spectroscopy confirms the magnetic structure of the other three rings.

6.
Chem Commun (Camb) ; 52(76): 11378-11381, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27709183

RESUMEN

We delineate the growth and stabilization of ultra-small (2-3 nm) {Cu3(BTC)2(H2O)2·xH2O} MOF nanoparticles on a 2D layered aminoclay template. The composite shows significant CO2 uptake (5.35 mmol g-1 at 298 K, 1 bar; 46% higher than pristine bulk MOF), superior CO2 separation efficiency from CO2/N2 and CO2/CH4 mixtures and higher catalytic proficiency for chemical fixation of CO2 into cyclic carbonates.

7.
Chem Sci ; 6(11): 6334-6340, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090251

RESUMEN

Templates with specific microenvironments have been long employed to facilitate specialized reactions. From enzymes to metal organic frameworks (MOFs), various systems have exerted their prowess to affect specific chemical reactions. Here we report, for the first time, the acceleration of a ring closure photo-oxidation reaction due to the specific structural constraints provided by layered materials. A stilbene derivative has been used as a prototype reactant and the di-hydrophenanthrene intermediate has been isolated and characterized en route to the complete photo-oxidation. Combining the gathered evidence, a possible mechanism for the chemical transformation has been proposed. Kinetic analysis showed that layered materials help to manipulate the rate of the electrocyclic ring closure and, in turn, accelerate the complete reaction sequence. The structural microenvironment induced by layered materials could be a unique platform to probe and stabilize a plethora of photo-oxidative reactions and intermediates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA