Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928692

RESUMEN

This paper introduces a novel one-dimensional convolutional neural network that utilizes clinical data to accurately detect choledocholithiasis, where gallstones obstruct the common bile duct. Swift and precise detection of this condition is critical to preventing severe complications, such as biliary colic, jaundice, and pancreatitis. This cutting-edge model was rigorously compared with other machine learning methods commonly used in similar problems, such as logistic regression, linear discriminant analysis, and a state-of-the-art random forest, using a dataset derived from endoscopic retrograde cholangiopancreatography scans performed at Olive View-University of California, Los Angeles Medical Center. The one-dimensional convolutional neural network model demonstrated exceptional performance, achieving 90.77% accuracy and 92.86% specificity, with an area under the curve of 0.9270. While the paper acknowledges potential areas for improvement, it emphasizes the effectiveness of the one-dimensional convolutional neural network architecture. The results suggest that this one-dimensional convolutional neural network approach could serve as a plausible alternative to endoscopic retrograde cholangiopancreatography, considering its disadvantages, such as the need for specialized equipment and skilled personnel and the risk of postoperative complications. The potential of the one-dimensional convolutional neural network model to significantly advance the clinical diagnosis of this gallstone-related condition is notable, offering a less invasive, potentially safer, and more accessible alternative.

2.
Micromachines (Basel) ; 14(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37763967

RESUMEN

The present work describes the training and subsequent implementation on an FPGA board of an LSTM neural network for the modeling and prediction of the exceedances of criteria pollutants such as nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter (PM10 and PM2.5). Understanding the behavior of pollutants and assessing air quality in specific geographical regions is crucial. Overexposure to these pollutants can cause harm to both natural ecosystems and living organisms, including humans. Therefore, it is essential to develop a solution that can accurately evaluate pollution levels. One potential approach is to implement a modified LSTM neural network on an FPGA board. This implementation obtained an 11% improvement compared to the original LSTM network, demonstrating that the proposed architecture is able to maintain its functionality despite reducing the number of neurons in its initial layers. It shows the feasibility of integrating a prediction network into a limited system such as an FPGA board, but easily coupled to a different system. Importantly, this implementation does not compromise the prediction accuracy for both 24 h and 72 h time frames, highlighting an opportunity for further enhancement and refinement.

3.
Diagnostics (Basel) ; 12(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36553037

RESUMEN

Glaucoma is an eye disease that gradually deteriorates vision. Much research focuses on extracting information from the optic disc and optic cup, the structure used for measuring the cup-to-disc ratio. These structures are commonly segmented with deeplearning techniques, primarily using Encoder-Decoder models, which are hard to train and time-consuming. Object detection models using convolutional neural networks can extract features from fundus retinal images with good precision. However, the superiority of one model over another for a specific task is still being determined. The main goal of our approach is to compare object detection model performance to automate segment cups and discs on fundus images. This study brings the novelty of seeing the behavior of different object detection models in the detection and segmentation of the disc and the optical cup (Mask R-CNN, MS R-CNN, CARAFE, Cascade Mask R-CNN, GCNet, SOLO, Point_Rend), evaluated on Retinal Fundus Images for Glaucoma Analysis (REFUGE), and G1020 datasets. Reported metrics were Average Precision (AP), F1-score, IoU, and AUCPR. Several models achieved the highest AP with a perfect 1.000 when the threshold for IoU was set up at 0.50 on REFUGE, and the lowest was Cascade Mask R-CNN with an AP of 0.997. On the G1020 dataset, the best model was Point_Rend with an AP of 0.956, and the worst was SOLO with 0.906. It was concluded that the methods reviewed achieved excellent performance with high precision and recall values, showing efficiency and effectiveness. The problem of how many images are needed was addressed with an initial value of 100, with excellent results. Data augmentation, multi-scale handling, and anchor box size brought improvements. The capability to translate knowledge from one database to another shows promising results too.

4.
Micromachines (Basel) ; 13(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744504

RESUMEN

Artificial intelligence techniques for pneumatic robot manipulators have become of deep interest in industrial applications, such as non-high voltage environments, clean operations, and high power-to-weight ratio tasks. The principal advantages of this type of actuator are the implementation of clean energies, low cost, and easy maintenance. The disadvantages of working with pneumatic actuators are that they have non-linear characteristics. This paper proposes an intelligent controller embedded in a programmable logic device to minimize the non-linearities of the air behavior into a 3-degrees-of-freedom robot with pneumatic actuators. In this case, the device is suitable due to several electric valves, direct current motors signals, automatic controllers, and several neural networks. For every degree of freedom, three neurons adjust the gains for each controller. The learning process is constantly tuning the gain value to reach the minimum of the mean square error. Results plot a more appropriate behavior for a transitive time when the neurons work with the automatic controllers with a minimum mean error of ±1.2 mm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA