Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Physiol Rep ; 12(17): e70004, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218615

RESUMEN

Endothelin-1 (ET-1) and its receptors are linked to increases in sensitivity of the chemoreceptors to hypoxic stress and the development of hypertension in preclinical models. We hypothesized ET receptor antagonism would lower resting blood pressure (BP) as well as the acute BP response to chemoreflex stress. Twenty-four men (31 ± 5 years, 26 ± 3 kg/m2) completed two study visits (control, bosentan). On each visit, BP was assessed under three conditions: (1) normoxia (FiO2 0.21), (2) chemoreflex excitation via hypoxia (FiO2 0.05-0.21), (3) chemoreflex inhibition via hyperoxia (FiO2 1.00). Bosentan increased plasma ET-1 (0.94 ± 0.90 to 1.27 ± 0.62 pg/mL, p = 0.004), supporting receptor blockade. Resting diastolic (73 ± 5 to 69 ± 7 mmHg, p = 0.007) and mean (93 ± 7 to 88 ± 7 mmHg, p = 0.005) BP were reduced following bosentan compared to control with no change in systolic BP (p = 0.507). The mean BP response to both acute hypoxia (-0.48 ± 0.38 to -0.25 ± 0.31 mmHg/%, p = 0.004) and hyperoxia (area under the curve -93 ± 108 to -27 ± 66 AU, p = 0.018) were attenuated following bosentan. Acute ET receptor inhibition attenuates the rise in BP during chemoreflex excitation as well as the fall in BP during chemoreflex inhibition in healthy young men. These data support a role for ET-1 in control of resting BP, possibly through a chemoreceptor-mediated mechanism.


Asunto(s)
Presión Sanguínea , Bosentán , Endotelina-1 , Hiperoxia , Hipoxia , Humanos , Masculino , Hiperoxia/fisiopatología , Presión Sanguínea/efectos de los fármacos , Adulto , Hipoxia/fisiopatología , Endotelina-1/sangre , Bosentán/farmacología , Antagonistas de los Receptores de Endotelina/farmacología , Sulfonamidas/farmacología
2.
J Physiol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39197114

RESUMEN

Preclinical work supports a role for the peripheral chemoreceptors in the progression of cardiovascular and metabolic pathologies. In the present study, we examined peripheral chemosensitivity in adults with type 2 diabetes (T2D) and the contribution of the peripheral chemoreceptors to resting cardiovascular and metabolic control. We hypothesized that: (1) adults with T2D exhibit exaggerated peripheral chemoreflex sensitivity; (2) the peripheral chemoreceptors contribute to cardiovascular dysfunction in T2D; and (3) attenuation of peripheral chemoreceptor activity improves glucose tolerance in T2D. Seventeen adults with diagnosed T2D [six males/11 females; aged 54 ± 11 years; glycated haemoglobin (HbA1c) 7.6 ± 1.5%] and 20 controls without T2D (9 males/11 females; aged 49 ± 13 years, HbA1c 5.2 ± 0.4%) participated in the study. The hypoxic ventilatory response (HVR) was assessed as an index of peripheral chemosensitivity. Resting heart rate, blood pressure and minute ventilation were measured when breathing normoxic followed by hyperoxic air (1.0 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) to acutely attenuate peripheral chemoreceptor activity. A subset of participants (n = 9 per group) completed two additional visits [normoxia (0.21 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), hyperoxia (1.0 F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ )] where glucose and insulin were measured for 2 h following an oral glucose challenge. HVR was augmented in adults with T2D (-0.84 ± 0.49 L min-1/%) vs. control (-0.48 ± 0.40 L min-1/%, P = 0.021). Attenuation of peripheral chemoreceptor activity decreased heart rate (P < 0.001), mean blood pressure (P = 0.009) and minute ventilation (P = 0.002); any effect of hyperoxia did not differ between groups. There was no effect of hyperoxia on the glucose (control, P = 0.864; T2D, P = 0.982), nor insulin (control, P = 0.763; T2D, P = 0.189) response to the oral glucose challenge. Peripheral chemoreflex sensitivity is elevated in adults with T2D; however, acute attenuation of peripheral chemoreflex activity with hyperoxia does not restore cardiometabolic function. KEY POINTS: Preclinical work supports a role for the peripheral chemoreceptors in the progression of cardiovascular and metabolic pathologies. In the present study, we examined peripheral chemosensitivity in adults with type 2 diabetes and the contribution of the peripheral chemoreceptors to resting cardiovascular control and glucose tolerance. We observed elevated peripheral chemoreflex sensitivity in adults with diabetes which was associated with glycaemic control (i.e. glycated haemoglobin). Notably, acute attenuation of peripheral chemoreflex activity with hyperoxia did not restore cardiometabolic function in the individuals studied.

5.
J Appl Physiol (1985) ; 137(3): 527-539, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867666

RESUMEN

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.


Asunto(s)
Proteína ADAM17 , Angiotensina II , Aorta Abdominal , Aneurisma de la Aorta Abdominal , Hipoxia , Ratones Endogámicos C57BL , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/patología , Animales , Masculino , Hipoxia/metabolismo , Hipoxia/complicaciones , Ratones , Proteína ADAM17/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/patología , Miocitos del Músculo Liso/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Humanos , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones
6.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781208

RESUMEN

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Asunto(s)
Complejo I de Transporte de Electrón , Proteínas Mitocondriales , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/genética
7.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787381

RESUMEN

Systemic insulin increases muscle sympathetic nerve activity (MSNA) via both central actions within the brainstem and peripheral activation of the arterial baroreflex. Augmented MSNA during hyperinsulinemia likely restrains peripheral vasodilation and contributes to the maintenance of blood pressure (BP). However, in the absence of insulin action within the peripheral vasculature, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans remains unknown. Herein, we hypothesized intranasal insulin administration would increase MSNA and BP in healthy young adults. Participants were assigned to time control [TC, n = 13 (5 females/8 males), 28 ± 1 yr] or 160 IU of intranasal insulin administered over 5 min [n = 15 (5 females/10 males), 26 ± 2 yr]; five (1 female/4 males) participants completed both conditions. MSNA (fibular microneurography), BP (finger photoplethysmography), and leg blood flow (LBF, femoral Doppler ultrasound) were assessed at baseline, and 15 and 30 min following insulin administration. Leg vascular conductance [LVC = (LBF ÷ mean BP) × 100] was calculated. Venous insulin and glucose concentrations remained unchanged throughout (P > 0.05). Following intranasal insulin administration, MSNA (burst frequency; baseline = 100%; minute 15, 121 ± 8%; minute 30, 118 ± 6%; P = 0.009, n = 7) and mean BP (baseline = 100%; minute 15, 103 ± 1%; minute 30, 102 ± 1%; P = 0.003) increased, whereas LVC decreased (baseline = 100%; minute 15, 93 ± 3%; minute 30, 99 ± 3%; P = 0.03). In contrast, MSNA, mean BP, and LVC were unchanged in TC participants (P > 0.05). We provide the first evidence that intranasal insulin administration in healthy young adults acutely increases MSNA and BP and decreases LVC. These results enhance mechanistic understanding of the sympathetic and peripheral hemodynamic response to insulin.NEW & NOTEWORTHY Systemic insulin increases muscle sympathetic nerve activity (MSNA) via central actions within the brainstem and peripheral activation of the arterial baroreflex. In the absence of peripheral insulin action, whether central insulin stimulation increases MSNA and influences peripheral hemodynamics in humans was unknown. We provide the first evidence that intranasal insulin administration increases MSNA and blood pressure and reduces leg vascular conductance. These results enhance mechanistic understanding of the sympathetic and hemodynamic response to insulin.


Asunto(s)
Administración Intranasal , Insulina , Músculo Esquelético , Sistema Nervioso Simpático , Humanos , Masculino , Femenino , Insulina/administración & dosificación , Insulina/sangre , Sistema Nervioso Simpático/efectos de los fármacos , Adulto , Músculo Esquelético/inervación , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Flujo Sanguíneo Regional/efectos de los fármacos , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Voluntarios Sanos , Adulto Joven , Barorreflejo/efectos de los fármacos
9.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37999645

RESUMEN

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Masculino , Humanos , Femenino , Células Endoteliales/metabolismo , Receptor de Insulina/metabolismo , Fosfatidilserinas/metabolismo , Neuraminidasa/metabolismo , Insulina/metabolismo , Desintegrinas , Proteína ADAM17/metabolismo , Anoctaminas/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 325(6): H1337-H1353, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801046

RESUMEN

Neuraminidases cleave sialic acids from glycocalyx structures and plasma neuraminidase activity is elevated in type 2 diabetes (T2D). Therefore, we hypothesize circulating neuraminidase degrades the endothelial glycocalyx and diminishes flow-mediated dilation (FMD), whereas its inhibition restores shear mechanosensation and endothelial function in T2D settings. We found that compared with controls, subjects with T2D have higher plasma neuraminidase activity, reduced plasma nitrite concentrations, and diminished FMD. Ex vivo and in vivo neuraminidase exposure diminished FMD and reduced endothelial glycocalyx presence in mouse arteries. In cultured endothelial cells, neuraminidase reduced glycocalyx coverage. Inhalation of the neuraminidase inhibitor, zanamivir, reduced plasma neuraminidase activity, enhanced endothelial glycocalyx length, and improved FMD in diabetic mice. In humans, a single-arm trial (NCT04867707) of zanamivir inhalation did not reduce plasma neuraminidase activity, improved glycocalyx length, or enhanced FMD. Although zanamivir plasma concentrations in mice reached 225.8 ± 22.0 ng/mL, in humans were only 40.0 ± 7.2 ng/mL. These results highlight the potential of neuraminidase inhibition for ameliorating endothelial dysfunction in T2D and suggest the current Food and Drug Administration-approved inhaled dosage of zanamivir is insufficient to achieve desired outcomes in humans.NEW & NOTEWORTHY This work identifies neuraminidase as a key mediator of endothelial dysfunction in type 2 diabetes that may serve as a biomarker for impaired endothelial function and predictive of development and progression of cardiovascular pathologies associated with type 2 diabetes (T2D). Data show that intervention with the neuraminidase inhibitor zanamivir at effective plasma concentrations may represent a novel pharmacological strategy for restoring the glycocalyx and ameliorating endothelial dysfunction.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Enfermedades Vasculares , Ratones , Humanos , Animales , Zanamivir/farmacología , Neuraminidasa/química , Neuraminidasa/farmacología , Células Endoteliales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antivirales/farmacología , Inhibidores Enzimáticos/farmacología
12.
BMJ Open ; 13(7): e071475, 2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423628

RESUMEN

OBJECTIVES: We sought to examine in individuals with SARS-CoV-2 infection whether risk for thrombotic and thromboembolic events (TTE) is modified by presence of a diabetes diagnosis. Furthermore, we analysed whether differential risk for TTEs exists in type 1 diabetes mellitus (T1DM) versus type 2 diabetes mellitus (T2DM). DESIGN: Retrospective case-control study. SETTING: The December 2020 version of the Cerner Real-World Data COVID-19 database is a deidentified, nationwide database containing electronic medical record (EMR) data from 87 US-based health systems. PARTICIPANTS: We analysed EMR data for 322 482 patients >17 years old with suspected or confirmed SARS-CoV-2 infection who received care between December 2019 and mid-September 2020. Of these, 2750 had T1DM; 57 811 had T2DM; and 261 921 did not have diabetes. OUTCOME: TTE, defined as presence of a diagnosis code for myocardial infarction, thrombotic stroke, pulmonary embolism, deep vein thrombosis or other TTE. RESULTS: Odds of TTE were substantially higher in patients with T1DM (adjusted OR (AOR) 2.23 (1.93-2.59)) and T2DM (AOR 1.52 (1.46-1.58)) versus no diabetes. Among patients with diabetes, odds of TTE were lower in T2DM versus T1DM (AOR 0.84 (0.72-0.98)). CONCLUSIONS: Risk of TTE during COVID-19 illness is substantially higher in patients with diabetes. Further, risk for TTEs is higher in those with T1DM versus T2DM. Confirmation of increased diabetes-associated clotting risk in future studies may warrant incorporation of diabetes status into SARS-CoV-2 infection treatment algorithms.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Tromboembolia , Humanos , Adolescente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Estudios Retrospectivos , COVID-19/complicaciones , COVID-19/epidemiología , Estudios de Casos y Controles , SARS-CoV-2 , Tromboembolia/epidemiología , Tromboembolia/etiología , Factores de Riesgo
13.
bioRxiv ; 2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37398338

RESUMEN

Mitochondria play a central role in muscle metabolism and function. In skeletal muscles, a unique family of iron-sulfur proteins, termed CISD proteins, support mitochondrial function. The abundance of these proteins declines with aging leading to muscle degeneration. Although the function of the outer mitochondrial proteins CISD1 and CISD2 has been defined, the role of the inner mitochondrial protein CISD3, is currently unknown. Here we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne Muscular Dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscle mitochondria, and that CISD3 interacts with, and donates its clusters to, Complex I respiratory chain subunit NDUFV2. These findings reveal that CISD3 is important for supporting the biogenesis and function of Complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact muscle degeneration syndromes, aging, and related conditions.

14.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R293-R304, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622084

RESUMEN

Vascular insulin resistance, a major characteristic of obesity and type 2 diabetes (T2D), manifests with blunting of insulin-induced vasodilation. Although there is evidence that females are more whole body insulin sensitive than males in the healthy state, whether sex differences exist in vascular insulin sensitivity is unclear. Also uncertain is whether weight loss can reestablish vascular insulin sensitivity in T2D. The purpose of this investigation was to 1) establish if sex differences in vasodilatory responses to insulin exist in absence of disease, 2) determine whether female sex affords protection against the development of vascular insulin resistance with long-term overnutrition and obesity, and 3) examine if diet-induced weight loss can restore vascular insulin sensitivity in men and women with T2D. First, we show in healthy mice and humans that sex does not influence insulin-induced femoral artery dilation and insulin-stimulated leg blood flow, respectively. Second, we provide evidence that female mice are protected against impairments in insulin-induced dilation caused by overnutrition-induced obesity. Third, we show that men and women exhibit comparable levels of vascular insulin resistance when T2D develops but that diet-induced weight loss is effective at improving insulin-stimulated leg blood flow, particularly in women. Finally, we provide indirect evidence that these beneficial effects of weight loss may be mediated by a reduction in endothelin-1. In aggregate, the present data indicate that female sex confers protection against obesity-induced vascular insulin resistance and provide supportive evidence that, in women with T2D, vascular insulin resistance can be remediated with diet-induced weight loss.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Femenino , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Insulina , Obesidad , Pérdida de Peso , Arteria Femoral , Dieta
15.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R90-R101, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440901

RESUMEN

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Femenino , Masculino , Animales , Ratones , Células Endoteliales/patología , Insuficiencia Cardíaca/complicaciones , Receptores de Mineralocorticoides/genética , Ratones Obesos , Proteínas Proto-Oncogénicas c-akt , Volumen Sistólico , Cardiomiopatías/etiología , Cardiomiopatías/prevención & control , Dieta Occidental , Obesidad/etiología
16.
Am J Physiol Heart Circ Physiol ; 323(6): H1231-H1238, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331555

RESUMEN

Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Glucemia , Insulina/farmacología , Vasodilatación , Músculo Esquelético
17.
Front Physiol ; 13: 920675, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213237

RESUMEN

White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERß may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERß DNA binding domain knock-out (ERßDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERß was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERßDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERßDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERß protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERß genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERß protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERß activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERß signaling. This novel discovery about the role of ERß in adipocyte metabolism may have important clinical applications.

18.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36083795

RESUMEN

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Rigidez Vascular , Actinas , Animales , Células Endoteliales , Humanos , Arterias Mesentéricas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico , Óxido Nítrico Sintasa , Obesidad/complicaciones , Péptidos/farmacología , Rigidez Vascular/fisiología
19.
Am J Physiol Heart Circ Physiol ; 323(4): H688-H701, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36018759

RESUMEN

Inflammation and vascular insulin resistance are hallmarks of type 2 diabetes (T2D). However, several potential mechanisms causing abnormal endothelial insulin signaling in T2D need further investigation. Evidence indicates that the activity of ADAM17 (a disintegrin and metalloproteinase-17) and the presence of insulin receptor (IR) in plasma are increased in subjects with T2D. Accordingly, we hypothesized that in T2D, increased ADAM17 activity sheds the IR ectodomain from endothelial cells and impairs insulin-induced vasodilation. We used small visceral arteries isolated from a cross-sectional study of subjects with and without T2D undergoing bariatric surgery, human cultured endothelial cells, and recombinant proteins to test our hypothesis. Here, we demonstrate that arteries from subjects with T2D had increased ADAM17 expression, reduced presence of tissue inhibitor of metalloproteinase-3 (TIMP3), decreased extracellular IRα, and impaired insulin-induced vasodilation versus those from subjects without T2D. In vitro, active ADAM17 cleaved the ectodomain of the IRß subunit. Endothelial cells with ADAM17 overexpression or exposed to the protein kinase-C activator, PMA, had increased ADAM17 activity, decreased IRα presence on the cell surface, and increased IR shedding. Moreover, pharmacological inhibition of ADAM17 with TAPI-0 rescued PMA-induced IR shedding and insulin-signaling impairments in endothelial cells and insulin-stimulated vasodilation in human arteries. In aggregate, our findings suggest that ADAM17-mediated shedding of IR from the endothelial surface impairs insulin-mediated vasodilation. Thus, we propose that inhibition of ADAM17 sheddase activity should be considered a strategy to restore vascular insulin sensitivity in T2D.NEW & NOTEWORTHY To our knowledge, this is the first study to investigate the involvement of ADAM17 in causing impaired insulin-induced vasodilation in T2D. We provide evidence that ADAM17 activity is increased in the vasculature of patients with T2D and support the notion that ADAM17-mediated shedding of endothelial IRα ectodomains is a novel mechanism causing vascular insulin resistance. Our results highlight that targeting ADAM17 activity may be a potential therapeutic strategy to correct vascular insulin resistance in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Estudios Transversales , Diabetes Mellitus Tipo 2/metabolismo , Desintegrinas , Células Endoteliales/metabolismo , Humanos , Insulina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Recombinantes/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/metabolismo
20.
Compr Physiol ; 12(4): 3781-3811, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997082

RESUMEN

The glycocalyx is a polysaccharide structure that protrudes from the body of a cell. It is primarily conformed of glycoproteins and proteoglycans, which provide communication, electrostatic charge, ionic buffering, permeability, and mechanosensation-mechanotransduction capabilities to cells. In blood vessels, the endothelial glycocalyx that projects into the vascular lumen separates the vascular wall from the circulating blood. Such a physical location allows a number of its components, including sialic acid, glypican-1, heparan sulfate, and hyaluronan, to participate in the mechanosensation-mechanotransduction of blood flow-dependent shear stress, which results in the synthesis of nitric oxide and flow-mediated vasodilation. The endothelial glycocalyx also participates in the regulation of vascular permeability and the modulation of inflammatory responses, including the processes of leukocyte rolling and extravasation. Its structural architecture and negative charge work to prevent macromolecules greater than approximately 70 kDa and cationic molecules from binding and flowing out of the vasculature. This also prevents the extravasation of pathogens such as bacteria and virus, as well as that of tumor cells. Due to its constant exposure to shear and circulating enzymes such as neuraminidase, heparanase, hyaluronidase, and matrix metalloproteinases, the endothelial glycocalyx is in a continuous process of degradation and renovation. A balance favoring degradation is associated with a variety of pathologies including atherosclerosis, hypertension, vascular aging, metastatic cancer, and diabetic vasculopathies. Consequently, ongoing research efforts are focused on deciphering the mechanisms that promote glycocalyx degradation or limit its syntheses, as well as on therapeutic approaches to improve glycocalyx integrity with the goal of reducing vascular disease. © 2022 American Physiological Society. Compr Physiol 12: 1-31, 2022.


Asunto(s)
Glicocálix , Mecanotransducción Celular , Endotelio Vascular/fisiología , Glicocálix/metabolismo , Glicocálix/patología , Heparitina Sulfato/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA