Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neotrop Entomol ; 48(3): 422-432, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30414018

RESUMEN

In the sensory system of insects, olfactory sensilla constitute important functional elements for discriminating odors. Therefore, we used light microscopy and scanning electron microscopy to investigate the morphology and distribution of sensilla in the antennae of Lobesia botrana (Denis & Schiffermüller). In addition, we studied the expression of the gene encoding for pheromone-binding protein 1 (LbotPBP1) by in situ hybridization. Lobesia botrana antennae are filiform and are subdivided into three segments: scape, pedicel, and flagellum. The number of flagellum and their overall length were significantly higher and longer in males than in females. Six morphological types of sensilla (trichodea, chaetica, coeloconica, auricillica, basiconica, and styloconica) were identified on the antennae of both sexes. Trichodea sensilla were the most abundant on the antennae of L. botrana, and three subtypes, discerned by their lengths, were observed. However, sensilla trichodea subtype III was only present in male antennae. Moreover, LbotPBP1 expression was restricted to this type of sensilla, thus confirming its olfactory role, specifically under the context of sexual pheromone perception.


Asunto(s)
Antenas de Artrópodos/anatomía & histología , Proteínas Portadoras/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas , Feromonas/metabolismo , Sensilos/ultraestructura , Animales , Antenas de Artrópodos/ultraestructura , Femenino , Masculino , Microscopía Electrónica de Rastreo , Olfato
2.
J Chem Phys ; 132(17): 174111, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20459160

RESUMEN

We study the microstructure and the effective interactions of model suspensions consisting of Yukawa-like colloidal particles homogeneously distributed in equally spaced parallel planar monolayers. All the particles interact with each other, but particle transfer between monolayers is not allowed. The spacing between the layers defines the effective system dimensionality. When the layer spacing is comparable to the particle size, the system shows quasi-three-dimensional behavior, whereas for large distances the layers behave as effective two-dimensional systems. We find that effective attractions between like-charged particles can be triggered by adjusting the interlayer spacing, showing that the distance between adjacent layers is an excellent control parameter for the effective interparticle interactions. Our study is based on Brownian dynamics simulations and the integral equations theory of liquids. The effective potentials are accounted for by exploiting the invariance of the Ornstein-Zernike matrix equation under contractions of the description, and on assuming that the difference between bare and effective bridge functions can be neglected. We find that the hypernetted chain approximation does not account properly for the effective interactions in layered systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA