Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Math Biol ; 87(5): 69, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823947

RESUMEN

Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.


Asunto(s)
Calcio , Células Fotorreceptoras Retinianas Conos , Ratones , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo , Calcio/metabolismo , Transducción de Señal , Cinética
2.
J Physiol ; 599(13): 3295-3312, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33977528

RESUMEN

KEY POINTS: Most vertebrate eyes have rod and cone photoreceptors, which use a signal transduction pathway consisting of many biological processes to transform light into an electrical response. We dissect and quantify the contribution of each of these processes to the photoreceptor light response by using a novel method of analysis that provides an analytical solution for the entire time course of the dim-flash light response. We find that the shape of the light response is exclusively controlled by deactivation parameters. Activation parameters scale this shape and alter the response amplitude. We show that the rising phase of the response depends on Ca2+ feedback, and we identify the deactivation parameters that control the recovery phase of the response. We devise new methods to extract values for deactivation and activation parameters from a separate analysis of response shape and response amplitude. ABSTRACT: Vertebrate eyes have rod and cone photoreceptors, which use a complex transduction pathway comprising many biological processes to transform the absorption of light into an electrical response. A fundamental question in sensory transduction is how these processes contribute to the response. To study this question, we use a well-accepted phototransduction model, which we analyse with a novel method based on the log transform of the current. We derive an analytical solution that describes the entire time course of the photoreceptor response to dim flashes of light. We use this solution to dissect and quantify the contribution of each process to the response. We find that the entire dim-flash response is proportional to the flash intensity. By normalizing responses to unit amplitude, we define a waveform that is independent of the light intensity and characterizes the invariant shape of dim-flash responses. We show that this waveform is exclusively determined by deactivation rates; activation rates only scale the waveform and affect the amplitude. This analysis corrects a previous assumption that the rising phase is determined entirely by activation rates. We further show that the rising phase depends on Ca2+ feedback to the cyclase, contrary to current belief. We identify the deactivation rates that control the recovery phase of the response, and we devise new methods to extract activation and deactivation rates from an analysis of response shape and response amplitude. In summary, we provide a comprehensive understanding of how the various transduction processes produce the cellular response.


Asunto(s)
Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Animales , Retroalimentación , Ratones , Estimulación Luminosa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA