Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 11191, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778515

RESUMEN

The nascent polypeptide-associated complex (NAC) consisting of α- and ß-subunits is an essential ribosome-associated protein conserved in eukaryotes. NAC is a ubiquitously expressed co-translational regulator of nascent protein folding and sorting providing for homeostasis of cellular proteins. Here we report on discovering the germline-specific NACαß paralogs (gNACs), whose ß-subunits, non-distinguishable by ordinary immunodetection, are encoded by five highly homologous gene copies, while the α-subunit is encoded by a single αNAC gene. The gNAC expression is detected in the primordial embryonic and adult gonads via immunostaining. The germline-specific α and ß subunits differ from the ubiquitously expressed paralogs by the extended intrinsically disordered regions (IDRs) acquired at the N- and C-termini of the coding regions, predicted to be phosphorylated. The presence of distinct phosphorylated isoforms of gNAC-ß subunits is confirmed by comparing of their profiles by 2D-isoeletrofocusing resolution before and after phosphatase treatment of testis ribosomes. We revealed that the predicted S/T sites of phosphorylation in the individual orthologous IDRs of gNAC-ß sequences of Drosophila species are positionally conserved despite these disordered regions are drastically different. We propose the IDR-dependent molecular crowding and specific coordination of NAC and other proteostasis regulatory factors at the ribosomes of germinal cells. Our findings imply that there may be a functional crosstalk between the germinal and ubiquitous α- and ß-subunits based on assessing their depletion effects on the fly viability and gonad development.


Asunto(s)
Drosophila melanogaster , Proteínas Ribosómicas , Animales , Drosophila , Drosophila melanogaster/genética , Células Germinativas , Masculino , Proteínas Ribosómicas/genética , Ribosomas/genética
2.
Nucleic Acids Res ; 50(6): 3203-3225, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35166842

RESUMEN

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.


Asunto(s)
Cromatina , Drosophila , Animales , Diferenciación Celular/genética , Cromatina/genética , Compensación de Dosificación (Genética) , Drosophila/genética , Células Germinativas , Masculino
3.
Nucleic Acids Res ; 50(2): 867-884, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35037046

RESUMEN

Eukaryotic genomes harbor hundreds of rRNA genes, many of which are transcriptionally silent. However, little is known about selective regulation of individual rDNA units. In Drosophila melanogaster, some rDNA repeats contain insertions of the R2 retrotransposon, which is capable to be transcribed only as part of pre-rRNA molecules. rDNA units with R2 insertions are usually inactivated, although R2 expression may be beneficial in cells with decreased rDNA copy number. Here we found that R2-inserted rDNA units are enriched with HP1a and H3K9me3 repressive mark, whereas disruption of the heterochromatin components slightly affects their silencing in ovarian germ cells. Surprisingly, we observed a dramatic upregulation of R2-inserted rRNA genes in ovaries lacking Udd (Under-developed) or other subunits (TAF1b and TAF1c-like) of the SL1-like complex, which is homologues to mammalian Selective factor 1 (SL1) involved in rDNA transcription initiation. Derepression of rRNA genes with R2 insertions was accompanied by a reduction of H3K9me3 and HP1a enrichment. We suggest that the impairment of the SL1-like complex affects a mechanism of selective activation of intact rDNA units which competes with heterochromatin formation. We also propose that R2 derepression may serve as an adaptive response to compromised rRNA synthesis.


Asunto(s)
ADN Ribosómico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Ribosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Retroelementos , Transcripción Genética
5.
Sci Rep ; 10(1): 1076, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974416

RESUMEN

In the Drosophila ovary, somatic escort cells (ECs) form a niche that promotes differentiation of germline stem cell (GSC) progeny. The piRNA (Piwi-interacting RNA) pathway, which represses transposable elements (TEs), is required in ECs to prevent the accumulation of undifferentiated germ cells (germline tumor phenotype). The soma-specific piRNA cluster flamenco (flam) produces a substantial part of somatic piRNAs. Here, we characterized the biological effects of somatic TE activation on germ cell differentiation in flam mutants. We revealed that the choice between normal and tumorous phenotypes of flam mutant ovaries depends on the number of persisting ECs, which is determined at the larval stage. Accordingly, we found much more frequent DNA breaks in somatic cells of flam larval ovaries than in adult ECs. The absence of Chk2 or ATM checkpoint kinases dramatically enhanced oogenesis defects of flam mutants, in contrast to the germline TE-induced defects that are known to be mostly suppressed by сhk2 mutation. These results demonstrate a crucial role of checkpoint kinases in protecting niche cells against deleterious TE activation and suggest substantial differences between DNA damage responses in ovarian somatic and germ cells.


Asunto(s)
Elementos Transponibles de ADN , Drosophila/genética , Células Germinativas/citología , Animales , Diferenciación Celular , Drosophila/citología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Células Germinativas/metabolismo , Masculino , Ovario/citología , Ovario/metabolismo , Nicho de Células Madre
6.
Genes (Basel) ; 10(3)2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862119

RESUMEN

Piwi-interacting RNAs (piRNAs) control transposable element (TE) activity in the germline. piRNAs are produced from single-stranded precursors transcribed from distinct genomic loci, enriched by TE fragments and termed piRNA clusters. The specific chromatin organization and transcriptional regulation of Drosophila germline-specific piRNA clusters ensure transcription and processing of piRNA precursors. TEs harbour various regulatory elements that could affect piRNA cluster integrity. One of such elements is the suppressor-of-hairy-wing (Su(Hw))-mediated insulator, which is harboured in the retrotransposon gypsy. To understand how insulators contribute to piRNA cluster activity, we studied the effects of transgenes containing gypsy insulators on local organization of endogenous piRNA clusters. We show that transgene insertions interfere with piRNA precursor transcription, small RNA production and the formation of piRNA cluster-specific chromatin, a hallmark of which is Rhino, the germline homolog of the heterochromatin protein 1 (HP1). The mutations of Su(Hw) restored the integrity of piRNA clusters in transgenic strains. Surprisingly, Su(Hw) depletion enhanced the production of piRNAs by the domesticated telomeric retrotransposon TART, indicating that Su(Hw)-dependent elements protect TART transcripts from piRNA processing machinery in telomeres. A genome-wide analysis revealed that Su(Hw)-binding sites are depleted in endogenous germline piRNA clusters, suggesting that their functional integrity is under strict evolutionary constraints.


Asunto(s)
Células Germinativas/metabolismo , Elementos Aisladores , ARN Interferente Pequeño/genética , Animales , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retroelementos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Epigenetics Chromatin ; 11(1): 40, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001204

RESUMEN

BACKGROUND: Telomeric small RNAs related to PIWI-interacting RNAs (piRNAs) have been described in various eukaryotes; however, their role in germline-specific telomere function remains poorly understood. Using a Drosophila model, we performed an in-depth study of the biogenesis of telomeric piRNAs and their function in telomere homeostasis in the germline. RESULTS: To fully characterize telomeric piRNA clusters, we integrated the data obtained from analysis of endogenous telomeric repeats, as well as transgenes inserted into different telomeric and subtelomeric regions. The small RNA-seq data from strains carrying telomeric transgenes demonstrated that all transgenes belong to a class of dual-strand piRNA clusters; however, their capacity to produce piRNAs varies significantly. Rhino, a paralog of heterochromatic protein 1 (HP1) expressed exclusively in the germline, is associated with all telomeric transgenes, but its enrichment correlates with the abundance of transgenic piRNAs. It is likely that this heterogeneity is determined by the sequence peculiarities of telomeric retrotransposons. In contrast to the heterochromatic non-telomeric germline piRNA clusters, piRNA loss leads to a dramatic decrease in HP1, Rhino, and trimethylated histone H3 lysine 9 in telomeric regions. Therefore, the presence of piRNAs is required for the maintenance of telomere chromatin in the germline. Moreover, piRNA loss causes telomere translocation from the nuclear periphery toward the nuclear interior but does not affect telomere end capping. Analysis of the telomere-associated sequences (TASs) chromatin revealed strong tissue specificity. In the germline, TASs are enriched with HP1 and Rhino, in contrast to somatic tissues, where they are repressed by Polycomb group proteins. CONCLUSIONS: piRNAs play an essential role in the assembly of telomeric chromatin, as well as in nuclear telomere positioning in the germline. Telomeric arrays and TASs belong to a unique type of Rhino-dependent piRNA clusters with transcripts that serve simultaneously as piRNA precursors and as their only targets. Telomeric chromatin is highly sensitive to piRNA loss, implying the existence of a novel developmental checkpoint that depends on telomere integrity in the germline.


Asunto(s)
Núcleo Celular/genética , ARN Interferente Pequeño/metabolismo , Telómero/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina , Drosophila melanogaster , Células Germinativas/química
8.
Nucleic Acids Res ; 45(13): 7666-7680, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28472469

RESUMEN

Piwi in a complex with Piwi-interacting RNAs (piRNAs) triggers transcriptional silencing of transposable elements (TEs) in Drosophila ovaries, thus ensuring genome stability. To do this, Piwi must scan the nascent transcripts of genes and TEs for complementarity to piRNAs. The mechanism of this scanning is currently unknown. Here we report the DamID-seq mapping of multiple Piwi-interacting chromosomal domains in somatic cells of Drosophila ovaries. These domains significantly overlap with genomic regions tethered to Nuclear Pore Complexes (NPCs). Accordingly, Piwi was coimmunoprecipitated with the component of NPCs Elys and with the Xmas-2 subunit of RNA transcription and export complex, known to interact with NPCs. However, only a small Piwi fraction has transient access to DNA at nuclear pores. Importantly, although 36% of the protein-coding genes overlap with Piwi-interacting domains and RNA-immunoprecipitation results demonstrate promiscuous Piwi binding to numerous genic and TE nuclear transcripts, according to available data Piwi does not silence these genes, likely due to the absence of perfect base-pairing between piRNAs and their transcripts.


Asunto(s)
Proteínas Argonautas/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Poro Nuclear/metabolismo , Ovario/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Argonautas/química , Proteínas Argonautas/genética , Cromatina/genética , Elementos Transponibles de ADN , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Genoma de los Insectos , Inestabilidad Genómica , Modelos Biológicos , Poro Nuclear/genética , Ovario/citología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
PLoS Genet ; 13(4): e1006731, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28448516

RESUMEN

In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon HeT-A, which we have observed in one particular transposon-resistant R strain.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , ARN Interferente Pequeño/genética , Telómero/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/inmunología , Proteínas Cromosómicas no Histona/metabolismo , Elementos Transponibles de ADN/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Silenciador del Gen , Genoma de los Insectos , Células Germinativas , Heterocromatina/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/inmunología , Telómero/inmunología
11.
Nucleic Acids Res ; 43(18): 8762-73, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240377

RESUMEN

The germline-specific role of telomeres consists of chromosome end elongation and proper chromosome segregation during early developmental stages. Despite the crucial role of telomeres in germ cells, little is known about telomere biology in the germline. We analyzed telomere homeostasis in the Drosophila female germline and early embryos. A novel germline-specific function of deadenylase complex Ccr4-Not in the telomeric transcript surveillance mechanism is reported. Depletion of Ccr4-Not complex components causes strong derepression of the telomeric retroelement HeT-A in the germ cells, accompanied by elongation of the HeT-A poly(A) tail. Dysfunction of transcription factors Woc and Trf2, as well as RNA-binding protein Ars2, also results in the accumulation of excessively polyadenylated HeT-A transcripts in ovaries. Germline knockdowns of Ccr4-Not components, Woc, Trf2 and Ars2, lead to abnormal mitosis in early embryos, characterized by chromosome missegregation, centrosome dysfunction and spindle multipolarity. Moreover, the observed phenotype is accompanied by the accumulation of HeT-A transcripts around the centrosomes in early embryos, suggesting the putative relationship between overexpression of telomeric transcripts and mitotic defects. Our data demonstrate that Ccr4-Not, Woc, Trf2 and Ars2, components of different regulatory pathways, are required for telomere protection in the germline in order to guarantee normal development.


Asunto(s)
Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Retroelementos , Telómero , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desarrollo Embrionario/genética , Femenino , Mitosis/genética , Ovario/metabolismo , Óvulo/metabolismo , Poliadenilación , Proteínas de Unión al ARN , Ribonucleasas/genética , Ribonucleasas/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Int J Pharm ; 491(1-2): 58-68, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26043824

RESUMEN

Electrostatic charging via contact electrification or tribocharging refers to the process of charge transfer between two solid surfaces when they are brought into contact with each other and separated. Charging of continuous particulate flows on solid surfaces is poorly understood and has often been empirical. This study aims toward understanding the tribocharging of pharmaceutical excipients using a simplified geometry of unidirectional flow in a hopper-chute assembly. Assuming electron transfer to be the dominant mechanism of electrification, a triboelectric series was generated using work functions estimated from quantum chemical calculations. A 3D-DEM model has been developed employing charge transfer and electrostatic forces. Using numerical simulations, the charge accumulation for an assemblage of particles during flow was determined under different conditions. To theoretically analyze the process of charging, parametric studies affecting powder flow have been investigated. A higher specific charge was observed at larger friction coefficients and lower restitution coefficients. The results obtained from the simulation model reinforce the collisional nature of triboelectrification. The simulation results revealed similar trends to experimental observations. However, to enable a priori prediction the model needs to be tested for additional materials or extended to other process operations.


Asunto(s)
Excipientes/química , Química Farmacéutica/métodos , Electrones , Fricción , Polvos/química , Electricidad Estática , Tecnología Farmacéutica/métodos
13.
PLoS Genet ; 10(2): e1004138, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516406

RESUMEN

The control of transposable element (TE) activity in germ cells provides genome integrity over generations. A distinct small RNA-mediated pathway utilizing Piwi-interacting RNAs (piRNAs) suppresses TE expression in gonads of metazoans. In the fly, primary piRNAs derive from so-called piRNA clusters, which are enriched in damaged repeated sequences. These piRNAs launch a cycle of TE and piRNA cluster transcript cleavages resulting in the amplification of piRNA and TE silencing. Using genome-wide comparison of TE insertions and ovarian small RNA libraries from two Drosophila strains, we found that individual TEs inserted into euchromatic loci form novel dual-stranded piRNA clusters. Formation of the piRNA-generating loci by active individual TEs provides a more potent silencing response to the TE expansion. Like all piRNA clusters, individual TEs are also capable of triggering the production of endogenous small interfering (endo-si) RNAs. Small RNA production by individual TEs spreads into the flanking genomic regions including coding cellular genes. We show that formation of TE-associated small RNA clusters can down-regulate expression of nearby genes in ovaries. Integration of TEs into the 3' untranslated region of actively transcribed genes induces piRNA production towards the 3'-end of transcripts, causing the appearance of genic piRNA clusters, a phenomenon that has been reported in different organisms. These data suggest a significant role of TE-associated small RNAs in the evolution of regulatory networks in the germline.


Asunto(s)
Elementos Transponibles de ADN/genética , Eucromatina/genética , Redes Reguladoras de Genes , ARN Interferente Pequeño/genética , Animales , Drosophila/genética , Femenino , Células Germinativas/metabolismo , Ovario/metabolismo
14.
Nucleic Acids Res ; 41(11): 5757-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23620285

RESUMEN

PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences--not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs.


Asunto(s)
Drosophila/genética , Elementos de Nucleótido Esparcido Largo , ARN Interferente Pequeño/biosíntesis , Transgenes , Animales , Cromatina/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/genética , Ovario/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Secuencias Repetidas Terminales
15.
Nucleic Acids Res ; 39(20): 8703-11, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21764773

RESUMEN

In the Drosophila germline, retrotransposons are silenced by the PIWI-interacting RNA (piRNA) pathway. Telomeric retroelements HeT-A, TART and TAHRE, which are involved in telomere maintenance in Drosophila, are also the targets of piRNA-mediated silencing. We have demonstrated that expression of reporter genes driven by the HeT-A promoter is under the control of the piRNA silencing pathway independent of the transgene location. In order to test directly whether piRNAs affect the transcriptional state of retrotransposons we performed a nuclear run-on (NRO) assay and revealed increased density of the active RNA polymerase complexes at the sequences of endogenous HeT-A and TART telomeric retroelements as well as HeT-A-containing constructs in the ovaries of spn-E mutants and in flies with piwi knockdown. This strongly correlates with enrichment of two histone H3 modifications (dimethylation of lysine 79 and dimethylation of lysine 4), which mark transcriptionally active chromatin, on the same sequences in the piRNA pathway mutants. spn-E mutation and piwi knockdown results in transcriptional activation of some other non-telomeric retrotransposons in the ovaries, such as I-element and HMS Beagle. Therefore piRNA-mediated transcriptional mode of silencing is involved in the control of retrotransposon expression in the Drosophila germline.


Asunto(s)
Drosophila/genética , Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Retroelementos , Telómero/genética , Animales , Femenino , Genes Reporteros , Mutación , Ovario/metabolismo , Transcripción Genética , Regulación hacia Arriba
16.
Genetics ; 171(4): 1673-81, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16020783

RESUMEN

In polytene chromosomes of D. melanogaster the heterochromatic pericentric regions are underreplicated (underrepresented). In this report, we analyze the effects of eu-heterochromatic rearrangements involving a cluster of the X-linked heterochromatic (Xh) Stellate repeats on the representation of these sequences in salivary gland polytene chromosomes. The discontinuous heterochromatic Stellate cluster contains specific restriction fragments that were mapped along the distal region of Xh. We found that transposition of a fragment of the Stellate cluster into euchromatin resulted in its replication in polytene chromosomes. Interestingly, only the Stellate repeats that remain within the pericentric Xh and are close to a new eu-heterochromatic boundary were replicated, strongly suggesting the existence of a spreading effect exerted by the adjacent euchromatin. Internal rearrangements of the distal Xh did not affect Stellate polytenization. We also demonstrated trans effects exerted by heterochromatic blocks on the replication of the rearranged heterochromatin; replication of transposed Stellate sequences was suppressed by a deletion of Xh and restored by addition of Y heterochromatin. This phenomenon is discussed in light of a possible role of heterochromatic proteins in the process of heterochromatin underrepresentation in polytene chromosomes.


Asunto(s)
Replicación del ADN/genética , Drosophila melanogaster/genética , Reordenamiento Génico/genética , Heterocromatina/genética , Cromosoma X/genética , Animales , Southern Blotting , Mapeo Cromosómico , Proteínas de Drosophila/genética , Hibridación in Situ , Familia de Multigenes/genética , Proteínas Quinasas/genética , Glándulas Salivales/química
17.
Drug Metab Dispos ; 33(2): 243-53, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15523046

RESUMEN

The therapeutic benefits of the antidepressant nefazodone have been hampered by several cases of acute hepatotoxicity/liver failure. Although the mechanism of hepatotoxicity remains unknown, it is possible that reactive metabolites of nefazodone play a causative role. Studies were initiated to determine whether nefazodone undergoes bioactivation in human liver microsomes to electrophilic intermediates. Following incubation of nefazodone with microsomes or recombinant P4503A4 in the presence of sulfydryl nucleophiles, conjugates derived from the addition of thiol to a monohydroxylated nefazodone metabolite were observed. Product ion spectra suggested that hydroxylation and sulfydryl conjugation occurred on the 3-chlorophenylpiperazine-ring, consistent with a bioactivation pathway involving initial formation of p-hydroxynefazodone, followed by its two-electron oxidation to the reactive quinone-imine intermediate. The formation of novel N-dearylated nefazodone metabolites was also discernible in these incubations, and 2-chloro-1,4-benzoquinone, a by-product of N-dearylation, was trapped with glutathione to afford the corresponding hydroquinone-sulfydryl adduct. Nefazodone also displayed NADPH-, time-, and concentration-dependent inactivation of P4503A4 activity, suggesting that reactive metabolites derived from nefazodone bioactivation are capable of covalently modifying P4503A4. A causative role for 2-chloro-1,4-benzoquinone and/or the quinone-imine intermediate(s) in nefazodone hepatotoxicity is speculated. Although the antianxiety agent buspirone, which contains a pyrimidine ring in place of the 3-chlorophenyl-ring, also generated p-hydroxybuspirone in liver microsomes, no sulfydryl conjugates of this metabolite were observed. This finding is consistent with the proposal that two-electron oxidation of p-hydroxybuspirone to the corresponding quinone-imine is less favorable due to differences in the protonation state at physiological pH and due to weaker resonance stabilization of the oxidation products as predicted from ab initio measurements.


Asunto(s)
Antidepresivos de Segunda Generación/metabolismo , Benzoquinonas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Triazoles/metabolismo , Antidepresivos de Segunda Generación/análisis , Antidepresivos de Segunda Generación/química , Benzoquinonas/análisis , Benzoquinonas/química , Biotransformación , Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Humanos , Iminas/análisis , Iminas/química , Iminas/metabolismo , Piperazinas , Triazoles/análisis , Triazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA