Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biomed Opt Express ; 13(2): 850-861, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284163

RESUMEN

We introduced and validated a method to encase guiding optical coherence tomography (OCT) probes into clinically relevant 36G polyimide subretinal injection (SI) cannulas. Modified SI cannulas presented consistent flow capacity and tolerated the typical mechanical stress encountered in clinical use without significant loss of sensitivity. We also developed an approach that uses a micromanipulator, modified SI cannulas, and an intuitive graphical user interface to enable precise SI. We tested the system using ex-vivo porcine eyes and we found a high SI success ratio 95.0% (95% CI: 83.1-99.4). We also found that 75% of the injected volume ends up at the subretinal space. Finally, we showed that this approach can be applied to transform commercial 40G SI cannulas to guided cannulas. The modified cannulas and guiding approach can enable precise and reproducible SI of novel gene and cell therapies targeting retinal diseases.

2.
Transl Vis Sci Technol ; 10(13): 19, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767622

RESUMEN

Purpose: The occurrence of iatrogenic retinal breaks (RB) in pars plana vitrectomy (PPV) is a complication that compromises the overall efficacy of the surgery. A subset of iatrogenic RB occurs when the retina (rather than the vitreous gel) is cut accidentally by the vitrector. We developed a smart vitrector that can detect in real-time potential iatrogenic RB and activate promptly a PPV machine response to prevent them. Methods: We fabricated the smart vitrectors by attaching a miniaturized fiber-based OCT sensor on commercial vitrectors (25G). The system's response time to an iatrogenic RB onset was measured and compared to the literature reported physiologically limited response time of the average surgeon. Two surgeons validated its ability to prevent simulated iatrogenic RB by performing PPV in pigs. Note that the system is meant to control the PPV machine and requires no visual or audio signal interpretation by the surgeons. Results: We found that the response time of the system (28.9 ± 6.5 ms) is 11 times shorter compared to the literature reported physiologically limited reaction time of the average surgeon (P < 0.0001). Ex vivo validation (porcine eyes) showed that the system prevents 78.95% (15/19) (95% confidence interval [CI] 54.43-93.95) of intentional attempts at creating RB, whereas in vivo validation showed that the system, prevents 55.68% (30/54) (95% CI 41.40-69.08), and prevents or mitigates 70.37% (38/54) (95% CI 56.39-82.02) of such attempts. A subset of failures was classified as "early stop" (i.e., false positive), having a prevalence of 5.26% (1 /19) in ex vivo tests and 24.07% (13/54) in in vivo tests. Conclusions: Our results indicate the smart vitrector can prevent iatrogenic RB by providing seamless intraoperative feedback to the PPV machine. Importantly, the use of the smart vitrector requires no modifications of the established PPV procedure. It can mitigate a significant proportion of iatrogenic RB and thus improve the overall efficacy of the surgery. Translational Relevance: Potential clinical adoption of the smart vitrector can reduce the incidence of iatrogenic RB in PPV and thus increase the therapeutic outcome of the surgery.


Asunto(s)
Perforaciones de la Retina , Animales , Enfermedad Iatrogénica/prevención & control , Retina , Perforaciones de la Retina/cirugía , Porcinos , Tomografía de Coherencia Óptica , Vitrectomía
3.
J Biomed Opt ; 25(3): 1-5, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31707773

RESUMEN

We introduced and validated a method to miniaturize graded-index (GRIN) fiber-based optical coherence tomography (OCT) probes down to 70 µm in diameter. The probes consist in an assembly of single-mode (SM), coreless (CL), and graded-index (GRIN) fibers. We opted for a probe design enabling controlled size reduction by hydrogen fluoride etching. The fabrication approach prevents nonuniform etching for both the GRIN and SM fiber components, while it requires no probe polishing postetching. We found that the miniaturized probes present insignificant loss of sensitivity (∼1 dB) compared to their thicker (125 µm) counterparts. We also showed that their focusing capabilities remain tunable and highly predictable. The fabrication process is simple and can be carried out by using inexpensive telecom equipment. Both the fabrication process and the developed probes can benefit the prototyping of minimally invasive endoscopic tools.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Miniaturización , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Animales , Endoscopía/métodos , Diseño de Equipo , Microcirugia , Fibras Ópticas , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA