Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(7): pgae219, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948018

RESUMEN

Increased demands for sustainable water and energy resources in densely populated basins have led to the construction of dams, which impound waters in artificial reservoirs. In many cases, scarce field data led to the development of models that underestimated the seepage losses from reservoirs and ignored the role of extensive fault networks as preferred pathways for groundwater flow. We adopt an integrated approach (remote sensing, hydrologic modeling, and field observations) to assess the magnitude and nature of seepage from such systems using the Grand Ethiopian Renaissance Dam (GERD), Africa's largest hydropower project, as a test site. The dam was constructed on the Blue Nile within steep, highly fractured, and weathered terrain in the western Ethiopian Highlands. The GERD Gravity Recovery and Climate Experiment Terrestrial Water Storage (GRACETWS), seasonal peak difference product, reveals significant mass accumulation (43 ± 5 BCM) in the reservoir and seepage in its surroundings with progressive south-southwest mass migration along mapped structures between 2019 and 2022. Seepage, but not a decrease in inflow or increase in outflow, could explain, at least in part, the observed drop in the reservoir's water level and volume following each of the three fillings. Using mass balance calculations and GRACETWS observations, we estimate significant seepage (19.8 ± 6 BCM) comparable to the reservoir's impounded waters (19.9 ± 1.2 BCM). Investigating and addressing the seepage from the GERD will ensure sustainable development and promote regional cooperation; overlooking the seepage would compromise hydrological modeling efforts on the Nile Basin and misinform ongoing negotiations on the Nile water management.

2.
Sci Total Environ ; 677: 530-544, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31067476

RESUMEN

There is a general agreement that deep aquifers experience significant lag time in their response to climatic variations. Analysis of Temporal Gravity Recovery and Climate Experiment (GRACE), Soil Moisture and Ocean Salinity mission (SMOS), satellite altimetry, stable isotopic composition of groundwater, and precipitation and static global geopotential models over the Nubian Sandstone Aquifer System (NSAS) revealed rapid aquifer response to climate variability. Findings include: (1) The recharge areas of the NSAS (Northern Sudan Platform subbasin) witnessed a dry period (2002-2012), where average annual precipitation (AAP) was modest (85 mm) followed by a wet period (2013-2016; AAP: 107 mm), and during both periods the AAP remained negligible (<10 mm) over the northern parts of the NSAS (Dakhla subbasin); (2) the secular trends in terrestrial water storage (TWS) over the Dakhla subbasin were estimated at -3.8 ±â€¯1.3 mm/yr and + 7.8 ±â€¯1 mm/yr for the dry and wet periods, respectively; (3) spatial variations in TWS values and phase are consistent with rapid groundwater flow from the Northern Sudan Platform subbasin and Lake Nasser towards the Dakhla subbasin during the wet period and from the lake during the dry period; and (4) networks of densely fractured and karstified bedrocks provide preferential pathways for groundwater flow. The proposed model is supported by (1) rapid response in groundwater levels in distant wells (>280 km from source areas) and in soil moisture content in areas with shallow (<2 m) groundwater levels to fluctuations in Lake Nasser surface water, and (2) the isotopic composition (O, H) of groundwater along the preferred pathways, consistent with mixing of enriched (Lake Nasser water or precipitation over Sudan) and depleted (NSAS fossil water) endmembers. Findings provide new insights into the response of large, deep aquifers to climate variability and address the sustainability of the NSAS and similar fossil aquifers worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA