Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 57: 71-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25724296

RESUMEN

In this paper the robust pole assignment problem using combined velocity and acceleration feedback for second-order linear systems with singular mass matrix is illustrated. This is promising for better applicability in several practical applications where the acceleration signals are easier to obtain than the proportional ones. First, the explicit parametric expressions of both the feedback gain controller and the eigenvector matrix are derived. The parametric solution involves manipulations only on the original second-order model. The available degrees of freedom offered by the velocity-acceleration feedback in selecting the associated eigenvectors are utilized to improve robustness of the closed-loop system. Straight-forward computational algorithms are introduced to demonstrate the effectiveness of the proposed approach. These algorithms are applicable for a dynamical system with mass matrices that can be either singular or nonsingular. Numerical examples are provided to illustrate the application of the proposed procedure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA