Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566876

RESUMEN

Copolymerization of diallylamine (DAA) and itaconic acid (IA) was synthesized using benzoyl peroxide as a free radical initiator, in dioxane as the solvent. The composition of the copolymer was determined by the nitrogen content using Edx. The solubility of the copolymer was also investigated. The water solubility of the synthesized copolymer depends on the comonomers' ratio. The structure of the copolymer was confirmed by 13C-NMR spectroscopy. To increase the water insolubility of the copolymers, and keep their hydrophilicity, the copolymer was allowed to react with chitosan to form a superabsorbent polymeric material (SP). The structure of the synthesized superabsorbent was confirmed using 13C-NMR spectroscopy. The thermal property of the (SP) was also investigated by TGA. The investigation of the chitosan-based superabsorbent, as water-retaining agents, was studied. The results revealed that the superabsorbent polymers exhibited a good swelling ability and salt tolerance.

2.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916381

RESUMEN

Chitosan-aluminum oxide nanocomposite was synthesized, characterized, and used as a green heterogeneous catalyst to synthesize novel imidazopyrazolylthione derivatives. Nanocomposite polymeric material was characterized by EDS-SEM and XRD. The powerful catalytic activity, and its base character of the nanocomposite, was used to synthesize imidazopyrazolylthione (1) in a good yield compared to traditional cyclocondensation synthesis. Using the nanocomposite catalyst, substitution of the thiol group (1) afforded the corresponding thiourea (2) and the corresponding ester (3). The efficiency of the nanocomposite over the traditional base organic catalyst, Et3N and NaOH, makes it an effective, economic, and reproducible nontoxic catalyst. Moreover, the heterogeneous nanocomposite polymeric film was easily isolated from the reaction medium, and recycled up to four times, without a significant loss of its catalytic activity. The newly synthesized derivatives were screened as antibacterial agents and showed high potency. Molecular docking was also performed for a more in-depth investigation. The results of the docking studies have demonstrated that the docked compounds have strong interaction energies with both Gram-positive and Gram-negative bacteria.

3.
Int J Biol Macromol ; 70: 124-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973650

RESUMEN

Wider plastic applications of poly(vinyl chloride) (PVC) has raised serious problem to the environment. Since (PVC) waste products resist biodegradation and persist in the environment for longer time. The object of this study is to blend (PVC) with biodegradable cellulose acetate to thermally support the polymer during the molding process as well as to enhance the biodegradability of (PVC) waste products. Blending of poly(vinyl chloride) and cellulose acetate (CA) in presence of N-(phenyl amino) maleimides (R-PhAM) where (R=H, 4-NO2) led to improvement in the thermal stability of the blend film at high temperatures as shown from the high values of initial decomposition temperature (To) determined from their thermogravimetry (TG) curves. Also, blending (PVC) with (CA) led to improvement in the mechanical properties of the blend films as compared to (PVC). The crystalline regions of cellulose acetate enhanced the elasticity of the blend films as shown from their high Young's modulus values.


Asunto(s)
Materiales Biocompatibles/química , Celulosa/análogos & derivados , Maleimidas/química , Cloruro de Vinilo/química , Rastreo Diferencial de Calorimetría , Celulosa/química , Termogravimetría , Difracción de Rayos X
4.
Int J Biol Macromol ; 68: 21-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24747379

RESUMEN

Cellulose acetate (CA) was modified using N-(phenyl amino) maleimides (R-APhM) where, RH or 4-NO2. The structure of the modified polymer was characterized by (13)C-NMR. The chemical modification is based on the reaction between the acetyl group of the glucopyranose ring in cellulose acetate and the proton of the amino group in N-(phenyl amino) maleimide molecule. The thermal gravimetry (TGA) was used to investigate the thermal stability of the modified polymeric samples. The modified cellulose acetate by 4-nitro (phenyl amino) maleimide (CA/4-NO2APhM) exhibits the highest thermal stability as compared to the N-(phenyl amino) maleimide (CA/APhM) and the unmodified CA. The crystallinity and morphology of the modified polymeric samples were investigated using X-ray diffraction (XRD) and emission scanning electron microscope (ESEM), respectively. The presence of N-(phenyl amino) maleimide moieties in the cellulose acetate matrix improved its mechanical property. Also, the organic nature of (R-APhM) moieties inside CA matrix reduced its wettability.


Asunto(s)
Celulosa/análogos & derivados , Maleimidas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Celulosa/química , Cristalización , Enlace de Hidrógeno , Espectrofotometría Ultravioleta , Temperatura , Termogravimetría , Humectabilidad , Difracción de Rayos X
5.
Ultrason Sonochem ; 19(6): 1180-5, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22621748

RESUMEN

The N-amino phenyl maleimide (N-APhM) and N-amino phenyl 2,3 dimethyl maleimide (N-APhDiMeM) derivatives were prepared by the condensation of phenyl hydrazine with maleic anhydride and 2,3 dimethyl maleic anhydride respectively. (13)C NMR spectroscopy proved the formation of the symmetric amino maleimide structure and not the pyridazinone or aminoisomaleimides. The copolymerization of acrylonitrile with the (N-APhM) and (N-APhDiMeM) were prepared using ultrasound. The thermal behavior of the prepared copolymers, under nitrogen atmosphere, was investigated using thermogravimetry (TG) techniques. The dyeing of the copolymers formed has been studied using both conventional and ultrasonic techniques. The effect of dye bath pH, ultrasonic power, dyeing time and temperature were studied. Color strength values obtained were found to be higher using ultrasound than with conventional heating. The results of fastness properties of the dyed copolymers were also studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA