Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34833341

RESUMEN

Polypyrrole/multiwalled carbon nanotubes composites (PPy/MWCNTs) were produced in an acidic solution utilizing an in situ oxidative polymerization method using ferric chloride as an oxidizing agent and sodium dodecyl sulfate as a soft template. Thermal evaporation was used to fabricate thin films from polypyrrole/multiwalled carbon nanotube composites. The resulting composites were examined by different techniques to explore their morphology, structural and electrical characteristics. The surface morphology analysis revealed that polypyrrole structure is a two-dimensional film with impeded nanoparticles and the thickness of coated PPy around the MWCNTs decreases when increasing the amount of MWCNTs. XRD analysis revealed that the average crystallite size of the prepared composites is 62.26 nm. The direct energy gap for PPy is affected by a factor ranging from 2.41 eV to 1.47 eV depending on the contents of MWCNTs. The thin film's optical properties were examined using experimental and TDDFT-DFT/DMOl3 simulation techniques. The optical constants and optical conductivity of the composites were calculated and correlated. The structural and optical characteristics of the simulated nanocomposites as single isolated molecules accord well with the experimental results. The nanocomposite thin films demonstrated promising results, making them a viable candidate for polymer solar cell demands. Under optimal circumstances, the constructed planar heterojunction solar cells with a 75 ± 3 nm layer of PPy/MWCNTs had a power conversion efficiency (PCE) of 6.86%.

2.
Membranes (Basel) ; 11(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34436323

RESUMEN

This paper's primary objective is to examine the vapor delivery mechanism through a tubular membrane distillation (MD) module. Experiments were conducted utilizing a hydrophobic tubular membrane module with a pore size of 0.2 µm. To establish the mass transport mechanism of water vapor, tests were carried out first with pure water as a feed. The permeate flow was then determined using NaCl aqueous feed solutions. Distilled water flux at diverse feed temperatures, feed flow rates, and feed salt concentrations was investigated. The permeate flux improved linearly with rising temperature and flow rate of the feed, however, it declined with feed concentration. Increasing temperature from 40 to 70 °C increased the permeate flux by a factor of 2.2, while increasing the feed flow rate from 60 to 120 L/h increased the permeate flux by a factor ranging from 0.7 to 1.1 depending on feed temperature. Using the Dusty gas model (DGM) the mass transport of water vapor is estimated in the membrane pores. The results showed that the water vapor delivery is controlled by way of the Knudsen molecular diffusion transition mechanism and its version changed into one capable of predicting the permeate fluxes. The mass transfer coefficient calculated and located using the Knudsen molecular transition version agreed properly with the corresponding experimental value. The delivery resistances were affected by working parameters, along with feed temperature, flow rate, and concentration. The mass transfer resistance of the membrane became the predominant controlling step to the MD process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA