Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anal Methods Chem ; 2019: 5381031, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31143486

RESUMEN

The present work describes a novel, simple, and fast electroanalytical methodology for naproxen (NAP) determination in pharmaceutical formulations and biological fluids in the presence of its degradation products. Carbon paste electrodes (CPEs) modified with different carbon nanomaterials, namely, glassy carbon powder (GCE), multiwall carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), graphene nanosheets (Gr), and graphene oxides (GO) were tested. Comprehensive studies were performed on the electrode matrix composition including the nature of the pasting liquids, pH, carbon nanomaterials, and mode of electrode modification. Two anodic oxidation peaks were recorded at 0.890 and 1.18 V in 1 × 10-1 mol·L-1 phosphate buffer solution at pH 6. Oxidation of naproxen (NAP) is an irreversible diffusion-controlled process. Calibration plots were rectilinear in the concentration ranging from 0.067 to 1.0 µg·mL-1 with correlation coefficient 0.9979. Photodegradation of NAP resulted in disappearance of the oxidation peak at 1.18 V, allowing simultaneous determination of NAP in presence of its degradation product. The achieved high sensitivity and selectivity suggest the application of the proposed protocol for naproxen determination in pharmaceutical preparations and human blood plasma.

2.
Mater Sci Eng C Mater Biol Appl ; 92: 644-656, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184791

RESUMEN

Nanocrystalline spinel ferrite nanoparticles [MxCo(1-x)Fe2O4;(M = Zn,Cu,Mn;x = 0 and 0.5)] like: Cobalt ferrite (CFO), Zinc Cobalt ferrite (ZCFO), Copper Cobalt ferrite (CCFO), and Manganese Cobalt ferrite (MCFO) modified carbon paste electrodes (CPE) were synthesized via sol-gel technique utilizing citric acid and ethylene glycol as a polymerization agent. The synthesized ferrite NPs were used as bi-functional smart biosensor, not only used to determine the drug Anagrelide-HCl (ANDH) in urine and serum samples, but also possesses antimicrobial potential against some pathogenic microbes, founded in the biological samples. The synthesized ferrite NPs were confirmed by XRD, FTIR spectroscopy, SEM, EDX, and elemental mapping images. Antimicrobial activities of ferrite NPs against selected urinary tract infected microbes were investigated. From XRD data and FTIR spectroscopy it is found that the average crystallite size is lies in the range 12.86 to 33.92 ±â€¯1.5 nm, also the bond lengths RA and RB increase from 1.8986 to 1.9145 Šand from 2.0434 to 2.0606 Šrespectively and Debye temperature θD lies in the range of 681.52-708.87 K. Our study describes the improvement of a screen-printed sensor, modified with ferrite NPs materials for rapid, sensitive and cost-effective quantification of ANDH present in the real samples such as blood serum samples, urine and in the pharmaceutical formulations. The results obtained postulate a linear regression between the ANDH charge density of peak current and its concentration in the range from (0.64-8.18 µg/ml) with DL 0.31 µg/ml and QL 0.94 µg/ml. Antimicrobial results indicated that ZCFO NPs were a novel antibacterial agent against Klebsiella pneumoniae (28.0 mm ZOI), and multidrug-resistant bacteria Enterococcus faecalis (27.0 mm ZOI). Additionally, ZCFO NPs were active against Candida albicans (18.0 mm ZOI) seems to be a smart antifungal agent. Therefore, ZCFO NPs can be used as applicant resources for industrial, medical, and biological applications.


Asunto(s)
Antiinfecciosos , Candida albicans/crecimiento & desarrollo , Cobalto , Enterococcus faecalis/crecimiento & desarrollo , Compuestos Férricos , Klebsiella pneumoniae/crecimiento & desarrollo , Nanopartículas/química , Quinazolinas/análisis , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Cobalto/química , Cobalto/farmacología , Compuestos Férricos/síntesis química , Compuestos Férricos/química , Compuestos Férricos/farmacología
3.
J Anal Methods Chem ; 2017: 2321572, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28811956

RESUMEN

Four precise, accurate, selective, and sensitive UV-spectrophotometric methods were developed and validated for the simultaneous determination of a binary mixture of Oxytetracycline HCl (OXY) and Flunixin Meglumine (FLU). The first method, dual wavelength (DW), depends on measuring the difference in absorbance (ΔA 273.4-327 nm) for the determination of OXY where FLU is zero while FLU is determined at ΔA 251.7-275.7 nm. The second method, first-derivative spectrophotometric method (1D), depends on measuring the peak amplitude of the first derivative selectively at 377 and 266.7 nm for the determination of OXY and FLU, respectively. The third method, ratio difference method, depends on the difference in amplitudes of the ratio spectra at ΔP 286.5-324.8 nm and ΔP 249.6-286.3 nm for the determination of OXY and FLU, respectively. The fourth method, first derivative of ratio spectra method (1DD), depends on measuring the amplitude peak to peak of the first derivative of ratio spectra at 296.7 to 369 nm and 259.1 to 304.7 nm for the determination of OXY and FLU, respectively. Different factors affecting the applied spectrophotometric methods were studied. The proposed methods were validated according to ICH guidelines. Satisfactory results were obtained for determination of both drugs in laboratory prepared mixture and pharmaceutical dosage form. The developed methods are compared favourably with the official ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA