Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 17343, 2024 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069554

RESUMEN

In recent years, academic and industrial research has focused on using agro-waste for energy and new material production to promote sustainable development and lessen environmental issues. In this study, new nanocomposites based on polyvinyl alcohol (PVA)-Starch using two affordable agricultural wastes, Citrus limon peels (LP) and Citrullus colocynthis (Cc) shells and seeds powders with different concentrations (2, 5, 10, and 15 wt%) as bio-fillers were prepared. The nanocomposites were characterized by Dielectric Spectroscopy, Fourier-Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and water swelling ratio. The antimicrobial properties of the nanocomposites against Escherichia coli, Staphylococcus aureus, and Candida albicans were examined to investigate the possibility of using such composites in biomedical applications. Additionally, the biocompatibility of the composites on human normal fibroblast cell lines (HFB4) was tested using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results demonstrate that the filler type and concentration strongly affect the film's properties. The permittivity ε', dielectric loss ε″ and conductivity σdc increased by increasing filler content but still in the insulators range that recommend such composites to be used in the insulation purposes. Both bio fillers control the water uptake, and the samples filled with LP were more water resistant. The polyvinyl alcohol/starch incorporated with 5 wt% LP and Cc have antimicrobial effects against all the tested microorganisms. Increasing the filler content has a negative impact on cell viability.


Asunto(s)
Citrullus colocynthis , Citrus , Nanocompuestos , Citrus/química , Nanocompuestos/química , Humanos , Citrullus colocynthis/química , Candida albicans/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Escherichia coli/efectos de los fármacos , Agricultura/métodos , Línea Celular , Almidón/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
3.
Mater Sci Eng C Mater Biol Appl ; 72: 543-550, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28024620

RESUMEN

Wound infection is a serious infection has been spread worldwide. In order to provide fast aid treatments for such infection, banana peels have been incorporated within chitosan as wound dressing. Banana was collected from Egyptian markets peeled and the dried peels were grounded to powder, Incorporated as nano fillers within chitosan matrix with different concentrations (0, 2, 5 and 10wt%). Glycerol was added as plasticizer and crosslinker to the membranes. The banana peel powder (BPP) particle shape and size were determined using Transmission Electron Microscope (TEM), The homogeneity and distribution of BPP in the membranes were investigated through Scanning Electron Microscope (SEM). The interaction between BPP and chitosan was characterized by Fourier Transform Infrared (FTIR). The dielectric properties of chitosan and BPP-chitosan membranes studied via dielectric constant, dielectric loss and conductivity measurements over a frequency range 100Hz up to 100kHz. The curves relating ε″ and the applied frequency are broad enough reflecting more than one relaxation process. These processes may be attributed to the relaxation processes of the main chain and its related motions. The higher values of ε″ at low frequency range may be a combination of the losses due to the electrical conductivity and the interfacial polarization process called "Maxwell Wagner Sillers" effect. By increasing BPP content in the sample a pronounced shift towards lower frequency was noticed. This shift may be due to some sort of polymer/filler interaction which causes an increase in the relaxed units and consequently the relaxation time. The addition of BPP decreases the swelling degree of chitosan matrix. The antimicrobial properties of the membranes were done against Gram positive, Gram negative bacteria and yeast. The results showed that chitosan/BPP membranes have a synergistic action with the highest activity at 10wt%. Moreover, Candida albicans was the most sensitive strain recorded for these membranes.


Asunto(s)
Antiinfecciosos/química , Quitosano/química , Musa/química , Nanocompuestos/química , Antiinfecciosos/farmacología , Vendajes , Candida albicans/efectos de los fármacos , Espectroscopía Dieléctrica , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Musa/metabolismo , Nanocompuestos/toxicidad , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA