Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38202990

RESUMEN

In the context of 6G technology, the Internet of Everything aims to create a vast network that connects both humans and devices across multiple dimensions. The integration of smart healthcare, agriculture, transportation, and homes is incredibly appealing, as it allows people to effortlessly control their environment through touch or voice commands. Consequently, with the increase in Internet connectivity, the security risk also rises. However, the future is centered on a six-fold increase in connectivity, necessitating the development of stronger security measures to handle the rapidly expanding concept of IoT-enabled metaverse connections. Various types of attacks, often orchestrated using botnets, pose a threat to the performance of IoT-enabled networks. Detecting anomalies within these networks is crucial for safeguarding applications from potentially disastrous consequences. The voting classifier is a machine learning (ML) model known for its effectiveness as it capitalizes on the strengths of individual ML models and has the potential to improve overall predictive performance. In this research, we proposed a novel classification technique based on the DRX approach that combines the advantages of the Decision tree, Random forest, and XGBoost algorithms. This ensemble voting classifier significantly enhances the accuracy and precision of network intrusion detection systems. Our experiments were conducted using the NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets. The findings of our study show that the DRX-based technique works better than the others. It achieved a higher accuracy of 99.88% on the NSL-KDD dataset, 99.93% on the UNSW-NB15 dataset, and 99.98% on the CIC-IDS2017 dataset, outperforming the other methods. Additionally, there is a notable reduction in the false positive rates to 0.003, 0.001, and 0.00012 for the NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets.

2.
Sensors (Basel) ; 22(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35214219

RESUMEN

The paradigm of dynamic shared access aims to provide flexible spectrum usage. Recently, Federal Communications Commission (FCC) has proposed a new dynamic spectrum management framework for the sharing of a 3.5 GHz (3550-3700 MHz) federal band, called a citizen broadband radio service (CBRS) band, which is governed by spectrum access system (SAS). It is the responsibility of SAS to manage the set of CBRS-SAS users. The set of users are classified in three tiers: incumbent access (IA) users, primary access license (PAL) users and the general authorized access (GAA) users. In this article, dynamic channel assignment algorithm for PAL and GAA users is designed with the goal of maximizing the transmission rate and minimizing the total cost of GAA users accessing PAL reserved channels. We proposed a new mathematical model based on multi-objective optimization for the selection of PAL operators and idle PAL reserved channels allocation to GAA users considering the diversity of PAL reserved channels' attributes and the diversification of GAA users' business needs. The proposed model is estimated and validated on various performance metrics through extensive simulations and compared with existing algorithms such as Hungarian algorithm, auction algorithm and Gale-Shapley algorithm. The proposed model results indicate that overall transmission rate, net cost and data-rate per unit cost remain the same in comparison to the classical Hungarian method and auction algorithm. However, the improved model solves the resource allocation problem approximately up to four times faster with better load management, which validates the efficiency of our model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA