Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurochem Res ; 47(3): 613-621, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34674138

RESUMEN

Critical illness encompasses a wide spectrum of life-threatening clinical conditions requiring intensive care. Our objective was to evaluate cognitive, inflammatory and cellular metabolism alterations in the central nervous system in an animal model of critical illness induced by zymosan. For this Wistar rats that were divided into Sham and zymosan. Zymozan was administered once intraperitoneally (30 g/100 g body weight) diluted in mineral oil. The animals were submitted to behavioral tests of octagonal maze, inhibitory avoidance and elevated plus maze. Brain structures (cortex, prefrontal and hippocampus) were removed at 24 h, 4, 7 and 15 days after zymosan administration for analysis of cytokine levels (TNF-α, IL-1b, IL-6 and IL-10), oxidative damage and oxygen consumption. Zymosan-treated animals presented mild cognitive impairment both in aversive (inhibitory avoidance) and non-aversive (octagonal maze) tasks by day 15. However, they did not show increase in anxiety (elevated-plus maze). The first neurochemical alteration found was an increase in brain pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) at day 4th in the hippocampus. In cortex, a late (7 and 15 days) increase in TNF-α was also noted, while the anti-inflammatory cytokine IL-10 decrease from 4 to 15 days. Oxygen consumption was decreased in the hippocampus and pre-frontal, but not cortex, only at 7 days. Additionally, it was observed a late (15 days) increase in oxidative damage parameters. This characterization of brain dysfunction in rodent model of critical illness reproduces some of the alterations reported in humans such neuropsychiatric disorders, especially depression, memory loss and cognitive changes and can add to the nowadays used models.


Asunto(s)
Disfunción Cognitiva , Enfermedad Crítica , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar , Roedores
2.
Mol Neurobiol ; 58(6): 2724-2733, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33495933

RESUMEN

Sepsis is an organ dysfunction caused by a host's unregulated response to infection, causing long-term brain dysfunction with microglial activation, the release of inflammatory components, and mitochondrial changes. Neuroinflammation can increase the expression of the 18-kD translocator protein (TSPO) in the mitochondria, leading to the activation of the microglia and the release of inflammatory components. The antagonist PK-11195 can modulate TSPO and reduce microglial activation and cognitive damage presented in an animal model of sepsis. The aim of this was to evaluate the effects of PK-11195 on long-term brain inflammation and cognitive impairment in an animal model of sepsis. Wistar rats, 60 days old, were submitted to cecal ligation and puncture (CLP) surgery, divided into groups control/saline, control/PK-11195, sepsis/saline, and sepsis/PK-11195. Immediately after surgery, the antagonist PK-11195 was administered at a dose of 3 mg/kg. Ten days after CLP surgery, the animals were submitted to behavioral tests and determination of brain inflammatory parameters. The sepsis/saline group presented cognitive damage. However, there was damage prevention in animals that received PK-11195. Besides, the sepsis increased the levels of cytokines and M1 microglia markers and caused oxidative damage. However, PK-11195 had the potential to decrease inflammation. These events show that the modulation of neuroinflammation during sepsis by PK-11195, possibly related to changes in TSPO, improves mitochondrial function in the animals' brains. In conclusion, the antagonist PK-11195 attenuated brain inflammation and prevented cognitive impairment in animals subjected to sepsis.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Isoquinolinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Isoquinolinas/farmacología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA