Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 100: 103412, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31487620

RESUMEN

The incidence of total hip arthroplasty (THA) has been evidently growing over the last few decades. Surface modification, such as polymer grafting onto implant surfaces using poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), has been gaining attention due to its excellent biocompatibility and high lubricity behaviour resulting in reducing surgical recurrence number and increasing implant lifetime. Investigating thermal stability and mechanical properties of the grafted polymer is, therefore, extremely important as these properties define the failure mechanism of implants. This study focuses on optimising monomer concentration to achieve the best physical, thermal and mechanical properties of the grafted additively manufactured titanium (Ti6Al4V) implants. Three different concentration of monomers, 0.4 M, 0.6 M and 0.8 M, were investigated, and grafted implants were characterised. The results from thermal analysis confirmed that the PMPC polymer is thermally stable for implant applications regardless of the monomer concentrations. A significant reduction in Young's modulus of polymer grafted samples (33.2-42.9%), in comparison with untreated Ti6Al4V samples and consequent improvement of wear resistance and elasticity behaviour, proved the potentiality of polymer films for implant applications. In summary, polymer grafted implant prepared with 0.6 M monomer concentration showed the optimal thermal, physical and wear resistance properties.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Prótesis de Cadera , Metacrilatos/química , Fosforilcolina/análogos & derivados , Titanio/química , Aleaciones , Materiales Biocompatibles/química , Rastreo Diferencial de Calorimetría , Articulación de la Cadera/fisiopatología , Calor , Humanos , Ensayo de Materiales , Fosforilcolina/química , Polietileno/química , Polímeros/química , Diseño de Prótesis , Falla de Prótesis , Estrés Mecánico , Propiedades de Superficie , Termogravimetría
2.
Mater Sci Eng C Mater Biol Appl ; 101: 696-706, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31029363

RESUMEN

Despite the tremendous acceptance of additively manufactured (AM) Titanium alloys (Ti6Al4V) in the field of biomedical engineering, the high surface roughness due to partially-melted particles (fabricated in selective laser melting (SLM) process), limits their uses as hip implants. The objective of this study, therefore, is to modify the SLM fabricated Ti6Al4V implant interfaces with 2-Methacryloyloxyethyl phosphorylcholine (MPC) polymer, in the hope of enhancing surface properties and preventing the attachment of the cell simultaneously without affecting the mechanical properties significantly. Three different monomer concentrations were examined to determine the influence of monomer concentrations on polymerisation rate, chain length, and surface properties of the implants. Samples grafted with 0.6 M monomer concentration showed more uniform surface and less surface roughness in comparison with other samples and untreated Ti6Al4V surfaces. 0.6 M monomer concentration was found to be the best option for grafting PMPC to the hip implant interfaces because of its improved surface morphology, surface roughness, polymerisation rate, penetration depth and hardness results. Moreover, cell study on optimal surfaces revealed that PMPC grafted surfaces prevent the implant interfaces from uncontrollable cell attachment which is of utmost importance in smoothing the motion of the hip implant under cyclic loading. Overall, the PMPC grafting demonstrated the potentiality of its application on SLM Ti6Al4V substrate for improved hip arthroplasty performance.


Asunto(s)
Fosforilcolina/química , Polímeros/química , Titanio/química , Artroplastia de Reemplazo de Cadera/métodos , Humanos , Metacrilatos/química , Fosforilcolina/análogos & derivados
3.
J Mech Behav Biomed Mater ; 87: 312-324, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30103113

RESUMEN

A significant number of hip replacements (HR) fail permanently despite the success of the medical procedure, due to wear and progressive loss of osseointegration of implants. An ideal model should consist of materials with a high resistance to wear and with good biocompatibility. This study aims to develop a new method of grafting the surface of selective laser melted (SLM) titanium alloy (Ti-6Al-4V) with poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC), to improve the surface properties and biocompatibility of the implant. PMPC was grafted onto the SLM fabricated Ti-6Al-4V, applying the following three techniques; ultraviolet (UV) irradiation, thermal heating both under normal atmosphere and UV irradiation under N2 gas atmosphere. Scanning electron microscopy (SEM), 3D optical profiler, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were used to characterise the grafted surface. Results demonstrated that a continuous PMPC layer on the Ti-6Al-4V surface was achieved using the UV irradiation under N2 gas atmosphere technique, due to the elimination of oxygen from the system. As indicated in the results, one of the advantages of this technique is the presence of phosphorylcholine, mostly on the surface, which reveals the existence of a strong chemical bond between the grafted layer (PMPC) and substrate (Ti-6Al-4V). The nano-scratch test revealed that the PMPC grafted surface improves the mechanical strength of the surface and thus, protects the underlying implant substrate from scratching under high loads.


Asunto(s)
Prótesis de Cadera , Rayos Láser , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Titanio/química , Adhesividad , Adsorción , Aleaciones , Oseointegración/efectos de los fármacos , Transición de Fase , Fosforilcolina/química , Fosforilcolina/farmacología , Ácidos Polimetacrílicos/farmacología , Albúmina Sérica/química , Humectabilidad
4.
Traffic Inj Prev ; 19(4): 423-432, 2018 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-29360404

RESUMEN

OBJECTIVE: Thoracic side airbags (tSABs) were integrated into the vehicle fleet to attenuate and distribute forces on the occupant's chest and abdomen, dissipate the impact energy, and move the occupant away from the intruding structure, all of which reduce the risk of injury. This research piece investigates and evaluates the safety performance of the airbag unit by cross-correlating data from a controlled collision environment with field data. METHOD: We focus exclusively on vehicle-vehicle lateral impacts from the NHTSA's Vehicle Crash Test Database and NASS-CDS database, which are replicated in the controlled environment by the (crabbed) barrier impact. Similar collisions with and without seat-embedded tSABs are matched to each other and the injury risks are compared. RESULTS: Results indicated that dummy-based thoracic injury metrics were significantly lower with tSAB exposure (P <.001). Yet, when the controlled collision environment data were cross-correlated with NASS-CDS collisions, deployment of the tSAB indicated no association with thoracic injury (tho. MAIS 2+ unadjusted relative risk [RR] = 1.14; 90% confidence interval [CI], 0.80-1.62; tho. MAIS 3+ unadjusted RR = 1.12; 90% CI, 0.76-1.65). CONCLUSION: The data from the controlled collision environment indicated an unequivocal benefit provided by the thoracic side airbag for the crash dummy; however, the real-world collisions demonstrate that no benefit is provided to the occupant. This has resulted from a noncorrelation between the crash test/dummy-based design taking the abstracting process too far to represent the real-world collision scenario.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Airbags/normas , Vehículos a Motor/estadística & datos numéricos , Traumatismos Torácicos/prevención & control , Heridas y Lesiones/epidemiología , Bases de Datos Factuales , Ambiente Controlado , Humanos , Riesgo
5.
Traffic Inj Prev ; 18(8): 852-858, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28557622

RESUMEN

OBJECTIVE: Thoracic side airbags (tSABs) deploy within close proximity to the occupant. Their primary purpose is to provide a protective cushion between the occupant and the intruding door. To date, various field studies investigating their injury mitigation has been limited and contradicting. The research develops efficacy estimations associated for seat-mounted tSABs in their ability to mitigate injury risk from the German collision environment. METHODS: A matched cohort study using German In-Depth Accident Study (GIDAS) data was implemented and aims to investigate the efficacy of seat-mounted tSAB units in preventing thoracic injury. Inclusion in the study required a nearside occupant involved in a lateral collision where the target vehicle exhibited a design year succeeding 1990. Collisions whereby a tSAB deployed were matched on a 1:n basis to collisions of similar severity where no airbag was available in the target vehicle. The outcome of interest was an incurred bodily or thoracic regional injury. Through conditional logistic regression, an estimated efficacy value for the deployed tSAB was determined. RESULTS: A total of 255 collisions with the deployed tSAB matched with 414 collisions where no tSAB was present. For the given sample, results indicated that the deployed tSAB was not able to provide an unequivocal benefit to the occupant thoracic region, because individuals exposed to the deployed tSAB were at equal risk of injury (Thorax Maximum Abbreviated Injury Scale (Tho.MAIS)2+ odds ratio [OR] = 1.04, 95% confidence interval [CI], 0.41-2.62; Tho.MAIS3+ OR = 1.15, 95% CI, 0.41-3.18). When attempting to isolate an effect for skeletal injuries, a similar result was obtained. Yet, when the tSAB was coupled with a head curtain airbag, a protective effect became apparent, most noticeable for head/face/neck (HFN) injuries (OR = 0.59, 95% CI, 0.21-1.65). CONCLUSION: The reduction in occupant HFN injury risk associated with the coupled tSAB and curtain airbag may be attributable to its ability to provide coverage over previous mechanisms of injury. Yet, the sole presence of the tSAB showed no ability to provide additional benefit for the occupant's thoracic region. Future work should identify mechanisms of injury in tSAB cases and attempt to quantify improvements in the vehicle's ability to resist intrusion.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Airbags , Traumatismos Torácicos/prevención & control , Adulto , Estudios de Cohortes , Bases de Datos Factuales , Femenino , Alemania/epidemiología , Humanos , Masculino , Traumatismos Torácicos/epidemiología
6.
Sci Technol Adv Mater ; 17(1): 715-735, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28228866

RESUMEN

Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA