Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Divers ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289257

RESUMEN

A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.

2.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 6): 679-681, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36072150

RESUMEN

The structure of the title mol-ecular complex, C16H11N·2C10H10O4, at 150 K has been determined. The mol-ecules form stacks consisting of aggregates with disordered 1-amino-pyrene mol-ecule surrounded by two 4,6-di-acetyl-resorcinol mol-ecules. Neighbouring stacks are linked by hydrogen bonds between the amine H atoms of the 1-amino-pyrene mol-ecule with the adjacent carbonyl oxygen atom of the 4,6-di-acetyl-resorcinol mol-ecule.

3.
Saudi Pharm J ; 28(8): 1035-1048, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32792848

RESUMEN

Sennoside A (dianthrone glycoside) shows laxative properties and used as a folk traditional medicine. Sennoside A capped silver nanoparticles (Ag/sennoside A) were synthesized at room temperature for the first time by using sennoside A as reducing and capping agent. UV-visible spectroscopic data reveals that the absorption peaks of pure sennoside A was appeared at 266, and 340 nm, which red shifted to 304, and 354 nm at higher sennoside A concentration. Upon addition of the Ag+ ions, an additional peak also observed at 398 nm, indicating the formation of spherical sennoside A capped silver nanoparticles (Ag/sennoside A). Cetyltrimethylammonium bromide (CTAB) was used a stabilizing agent to determine the role of cationic micelles on the nucleation and growth processes of Ag/sennoside A NPs formation. The 2,2-diphenyl-1-picrylhydrazyl nitrogen radical (DPPH · ), two bacteria strains (Staphylococcus aureus and Escherichia coli) and two yeast strains (Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019) were used to determine the antioxidant and antimicrobial properties of Ag/sennoside A NPs. In addition, Rhein-9-anthrone (4,5-dihydroxy-10-oxo-9H-anthracene-2-carboxylate) was isolated from the acidic hydrolysis of glycoside linkage of sennoside A and characterized. The antioxidant and antimicrobial activities of rhein-9-anthrone were also determined against DPPH radical, antibacterial and antifungal strains. The minimum inhibitory concentration was determined and discussed.

4.
J Photochem Photobiol B ; 185: 143-152, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29906655

RESUMEN

Silver-iron bimetallic nanoparticles (BMNPs) were synthesized by using AgNO3 and Fe(NO3)3 as an Ag/Fe source in presence of Palm dates fruit. Upon addition of extract to a solution of Ag+ and Fe3+, a prefect transparent stable dark brown color appears with in a few minuets at room temperature. In order to conform the nature of resulting color, UV-visible spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) techniques were used. The absence of surface plasmon resonance (SPR) peaks in the entire UV-visible region suggests the formation of silvercore-ironshell BMNPs. The obtained nanoparticles were used as a catalyst for the degradation of bromothymol blue (BTB) in absence and presence of sunlight. The degradation kinetics was studied in presence of electron acceptors and scavengers, such as hydrogen peroxide, ammonium oxalate, ammonium per sulphate, benzoquinone, isopropyl alcohol, n-butanol, potassium bromate and potassium iodide. Radical trapping experiments demonstrates that active holes (h+) and generated hydroxy radical are primary species involved in H2O2 assisted catalytic degradation process. The free-radical scavenging, antioxidant and antimicrobial activities were determined for extract and BMNPs. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities were found to increase with increasing the amounts of extract. The silver-iron showed good invitro antibacterial activities against human pathogens.


Asunto(s)
Antiinfecciosos/química , Antioxidantes/química , Azul de Bromotimol/química , Nanopartículas del Metal/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antioxidantes/síntesis química , Catálisis , Escherichia coli/efectos de los fármacos , Frutas/química , Frutas/metabolismo , Tecnología Química Verde , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Phoeniceae/química , Phoeniceae/metabolismo , Extractos Vegetales/química , Plata/química , Staphylococcus aureus/efectos de los fármacos , Resonancia por Plasmón de Superficie
5.
Artículo en Inglés | MEDLINE | ID: mdl-28402909

RESUMEN

The work describes an easy seedless competitive chemical reduction method for the synthesis of Ag@Au/Ag bimetallic nanoparticles by mixing AgNO3, HAuCl4 and cysteine. Transmission electron microscope (TEM) images show that the large number of irregular, cross-linking, and aggregated Ag@Au/Ag are formed in a reaction mixture (HAuCl4+AgNO3+cysteine), whereas flower-like nanocomposites are obtained in presence of cetyltrimethylammonium bromide (CTAB), which acted as a shape-directing agent. Optical images reveal that the initially reaction proceeds through formation of purple color, which changes into dark brown color with the reaction time, indicating the formation of Ag@Au/Ag nanocomposites. The Ag+ has strong tendency to form complex with cysteine. Firstly, the reduction of Ag+ ions to Ag0 occurred by the HS group of the cysteine-Ag complex. Secondly, AuCl4- ions adsorbed on the positive surface of Ag0, which undergoes reduction by potential deposition, and leads to the formation of Ag@Au/Ag bimetallic nanoparticles. Inorganic electrolytes (NaCl, NaBr, NaNO3 and Na2SO4) have significant impact on the stability and aggregation of Ag@Au/Ag nanocomposites.

6.
Bioprocess Biosyst Eng ; 39(4): 575-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796584

RESUMEN

Silver nanoparticles (AgNPs) were synthesized using Ocimum sanctum (Tulsi) leaves aqueous extract as reducing as well as a capping agent in absence and presence of cetyltrimethylammonium bromide (CTAB). The resulting nanomaterials were characterized by UV-visible spectrophotometer, and transmission electron microscope. The UV-Vis spectroscopy revealed the formation of AgNPs at 400-450 nm. TEM photographs indicate that the truncated triangular silver nanoplates and/or spherical morphology of the AgNPs with an average diameter of 25 nm have been distorted markedly in presence of CTAB. The AgNPs were almost mono disperse in nature. Antimicrobial activities of AgNPs were determined by using two bacteria (Gram positive Staphylococcus aureus MTCC-3160), Gram negative Escherichia coli MTCC-450) and one species of Candida fungus (Candida albicans ATCC 90030) with Kirby-Bauer or disc diffusion method. The zone of inhibition seems extremely good showing a relatively large zone of inhibition in both Staphylococcus aureus, Escherichia coli, and Candida albicans strains.


Asunto(s)
Antiinfecciosos , Candida albicans/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Nanopartículas del Metal/química , Plata , Staphylococcus aureus/crecimiento & desarrollo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Plata/química , Plata/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-26641283

RESUMEN

Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag(+) ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol(-1) dm(3) cm(-1) at 495 nm. Absorption spectra of Congo red with Ag(+) ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 10(4) mol(-1) dm(3) and 11,764 mol(-1) dm(3) cm(-1), respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA