Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 18165, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307527

RESUMEN

In the present study, an eco-friendly process was made for the rapid synthesis of silver nanoparticles using aqueous leaf extract of Hibiscus sabdariffa. The process was characterized by Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and X-ray diffraction (XRD). These green silver nanoparticles (NPs) were used for mitigating the adverse effects of salinity on seed germination and growth parameters in plants. Accordingly, two experiments were conducted. In the first experiment, seven concentrations of green silver NPs and nine levels of NaCl:CaCl were apptoed on seeds for germination, and their effects were evaluated. In the second experiment, three concentrations of green silver NPs and NaCl were hypothesized to affect plant growth parameters. Seed germination, plant height, leaf, and root fresh and dry weights, as well as relative water content (RWC), decreased significantly under salt stress. However, green silver NPs intervened by alleviating the adverse effects of stress. Accordingly, green silver NPs were beneficial due to (1) activation of the antioxidant system by enhancing antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), and superoxide dismutase (SOD); (2) increase in the amounts of proline, soluble sugars and carbohydrates for osmoprotection; (3) improvements in flavonoid and anthocyanin contents. Real-time PCR showed that flavonoid and anthocyanin contents increased because of higher expressions in chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and anthocyanidin synthase (ANS) genes. In conclusion, green silver NPs offered an eco-friendly application for further research on agricultural development.


Asunto(s)
Hibiscus , Nanopartículas del Metal , Plata/farmacología , Hibiscus/metabolismo , Salinidad , Antioxidantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Antocianinas , Cloruro de Sodio , Extractos Vegetales/farmacología , Difracción de Rayos X , Tecnología Química Verde
2.
Plant Physiol Biochem ; 183: 9-22, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35533640

RESUMEN

In turfgrass breeding, competent grass ecotypes are preferably identified for their resistance to salinity condition. This research was designed to explore genes that induce salt resistance (NHX1, NHX2, HKT1;4, SnRK2.4 and NAC9) and their role in physiological modifications of six tall wheatgrass ecotypes (Agropyron elongatum L.). The sites of sample collection were characterized by different levels of salinity, i.e. low (EC: 4 dS m-1 and pH: 6.5), moderate (EC: 7 dS m-1 and pH: 6.5) and high (EC: 12 dS m-1 and pH: 7.5). This study was designed as a split-plot in a randomized complete block where salinity treatments served as the whole-plot factor and ecotypes served as the subplot factor. The ecotypes were screened for their resistance to salinity, based on visual symptoms, salt injury index, physiological features and biochemical parameters. The results revealed that ecotype 'AE5' was most resistant to salinity than other ecotypes, whereas 'AE3' was the most susceptible. To understand why these differences occurred, measurements were aimed at revealing mRNA levels that resulted from genes responsible for salt resistance. Our results demonstrated that salinity-resistant ecotypes showed high expression levels of several genes, i.e. NHX1, NHX2, HKT1;4, SnRK2.4 and NAC9 in the leaves and roots. These results were corroborated by a decrease (by 1.5-2.5 times) in stress markers, namely, superoxide anion (O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as an increase (by 0.5-7 times) in enzymatic and non-enzymatic antioxidant activity in salinity-resistant ecotypes when the plants were exposed to salinity. We observed higher values of initial root length and lateral root density (21% and 18%, respectively) in salinity-resistant ecotypes under salinity condition, compared to other ecotypes. There were lower expression levels of NHX1 and NHX2 in the roots, which were 3.2 and 2.1 times less, respectively, compared to the leaves. This implied that NHX1 and NHX2 expressions can lead to the sequestration of Na+ in the leaves during salinity condition. The current research revealed that HKT1;4 was more able to restrict Na + accumulation, compared to the actions of NHX1 and NHX2 genes. The over-expression of HKT1;4 in 'AE5' allowed a better maintenance of root growth during salinity condition. The expression of NAC9 had an increase of 2.1-fold which correlated with an increase in the amount of antioxidant enzymes. In general, the location of sample collection explained the differences in gene expression, especially regarding the extent to which plants respond to salinity condition. Ultimately, these differences can define physiological features in salinity-resistant and salinity-susceptible ecotypes of tall wheatgrass.


Asunto(s)
Agropyron , Tolerancia a la Sal , Agropyron/genética , Agropyron/metabolismo , Expresión Génica , Peróxido de Hidrógeno/metabolismo , Iones/metabolismo , Fitomejoramiento , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Estrés Salino/genética , Tolerancia a la Sal/genética , Sodio/metabolismo
3.
Front Plant Sci ; 11: 511, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670299

RESUMEN

Improving marketability and extension of vase life of cut flowers has practical significance for the development of the cut flower industry. Although considerable efforts have been made over many years to improve the vase life of cut flowers through controlling the immediate environment and through post-harvest use of floral preservatives, the impact of lighting environment on vase life has been largely overlooked. In the current study, the effect of three LED light spectra [white (400-730 nm), blue (peak at 460 nm), and red (peak at 660 nm)] at 150 µmol m-2 s-1 on vase life and on physiological and biochemical characteristics of carnation cut flowers was investigated. Exposure to blue light (BL) considerably delayed senescence and improved vase life over that of flowers exposed to red light (RL) and white light (WL). H2O2 and malondialdehyde (MDA) contents in petals gradually increased during vase life; the increase was lowest in BL-exposed flowers. As a consequence, BL-exposed flowers maintained a higher membrane stability index (MSI) compared to RL- and WL-exposed flowers. A higher activity of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] was detected in petals of BL-exposed flowers, compared to their activities in RL- and WL-exposed flowers. In BL-exposed flowers, the decline in petal carotenoid contents was delayed in comparison to RL- and WL-exposed flowers. Maximum quantum efficiency of photosystem II (Fv/Fm) and a higher percentage of open stomata were observed in leaves of BL-exposed flowers. Sucrose and glucose contents accumulated in petals during vase life; sugar concentrations were higher in BL-exposed flowers than in RL- and WL-exposed flowers. It is concluded that BL exposure improves the vase life of carnation cut flowers through its effect on the antioxidant defense system in petals and on photosynthetic performance in the leaves.

4.
Plant Physiol Biochem ; 151: 103-112, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32208322

RESUMEN

Endogenous signals in response to exogenous factors determine the senescence of flowers. Interactions among phytohormones especially abscisic acid (ABA) and ethylene are the major determinant of the senescence. In the present study, complex expression patterns of the genes related to ABA and ethylene as endogenous signals were investigated on cut carnations (Dianthus caryophyllus L.) that were exposed to different light spectra. Expression of ethylene biosynthetic (DcACS and DcACO), and signaling (DcETR and DcEin2) genes and also genes involved in ABA biosynthesis (DcZEP1 and DcNCED1), transport (DcABCG25 and DcABCG40) and catabolism (DcCYP707A1) were evaluated in petals of carnations exposed to three light spectra [white, blue and red]. Lowest relative membrane permeability (RMP) was detected in flowers that exposed to Blue light (BLFs), as a consequence, the longest vase life was found in BLFs. The Red and White lights markedly accelerated flower senescence and increased expression of DcACS and DcACO on day 6 and 10 of vase life assessment respectively; while Blue light inhibited the expression of ethylene biosynthetic genes. Expression of the genes involved in the production and transport of ABA and in signal transduction of ethylene was elevated during vase life of flowers irrespective of exposure to different light spectra. In conclusion, Blue light can be an effective environmental factor to extend the vase life of carnation flowers by delaying the petal senescence through down-regulation of ethylene biosynthetic genes and up-regulation of ABA biosynthetic genes.


Asunto(s)
Ácido Abscísico/metabolismo , Dianthus/fisiología , Etilenos/biosíntesis , Flores/fisiología , Genes de Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Dianthus/efectos de la radiación , Flores/efectos de la radiación , Transducción de Señal
5.
Nat Prod Res ; 32(3): 322-326, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28670916

RESUMEN

The effects of gamma irradiation (GR) on total phenol, anthocyanin and antioxidant activity were investigated in three different Persian pistachio nuts at doses of 0, 1, 2 and 4 kGy. The antioxidant activity, as determined by FRAP and DPPH methods, revealed a significant increase in the 1-2 kGy dose range. Total phenol content (TPC) revealed a similar pattern or increase in this range. However, when radiation was increased to 4 kGy, TPC in all genotypes decreased. A radiation dose of 1 kGy had no significant effect on anthocyanin content of Kale-Ghouchi (K) and Akbari (A) genotypes, while it significantly increased the anthocyanin content in the Ghazvini (G) genotype. In addition, increasing the radiation to 4 kGy significantly increased the anthocyanin content of K and G genotypes. To conclude, irradiation could increase the phenolic content, anthocyanin and antioxidant activity of pistachio nuts.


Asunto(s)
Rayos gamma , Nueces/química , Nueces/efectos de la radiación , Pistacia/química , Pistacia/efectos de la radiación , Antocianinas/análisis , Antocianinas/efectos de la radiación , Antioxidantes/análisis , Antioxidantes/farmacología , Antioxidantes/efectos de la radiación , Fenol/análisis , Fenol/efectos de la radiación , Fenoles/análisis , Fenoles/efectos de la radiación
6.
Plant Physiol Biochem ; 111: 129-143, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27915174

RESUMEN

Drought stress is the major limiting factor which affects turfgrass management in area with restricted rainfall or irrigation water supply. Trinexapac ethyl (TE), Paclobutrazol (PAC) and Abscisic acid (ABA) are three plant growth regulators (PGRs) that are commonly used on turf species for increasing their tolerance to different environmental stresses such as drought. However, little is known about the impact of PGRs on stress tolerance of Iranian Perennial ryegrass (Lolium perenne). The present study was conducted to examine the visual and physiological changes of Iranian Perennial ryegrass in response to foliar application of TE, PAC, and ABA under drought stress conditions. According to the obtained results, application of all three PGRs considerably restored visual quality of drought exposed plants. TE treatment increased chlorophyll content, proline content and resulted in less malondialdehyde (MDA) in drought stressed Perennial ryegrass. Application of all PGRs enhanced the relative water content (RWC) and decreased the electrolyte leakage (EL) and Hydrogen peroxide contents (H2O2 content) of plants under drought stress, though the impact of TE was more pronounced. Throughout the experiment, TE- and ABA-treated plant showed greater soluble sugar (SSC) content as compared to the control. Antioxidant enzymes activities of drought exposed plants were considerably increased by PGRs application. Catalase (CAT) and Superoxide dismutase (SOD) activities were greater in TE-treated grasses followed by PAC-treated plants. Ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced by TE and ABA application. The results of the present investigation suggest that application of TE, ABA and PAC enhances drought tolerance in Perennial ryegrass. TE, PAC and ABA were all effective in mitigating physiological damages resulting from drought stress, however the beneficial effects of TE were more pronounced. The result obtained of real time-PCR suggested that regulation of CAT, APX, POD and SOD genes expression at translational levels highly depended on the application of TE, PAC and ABA. Also, the results showed that deletion mutation in SOD and POD genes were not leading to enzyme inactivation.


Asunto(s)
Ácido Abscísico/farmacología , Ciclopropanos/farmacología , Lolium/genética , Lolium/fisiología , Quinonas/farmacología , Estrés Fisiológico/efectos de los fármacos , Triazoles/farmacología , Antioxidantes/metabolismo , Carbohidratos/análisis , Clorofila/metabolismo , Electrólitos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Lolium/efectos de los fármacos , Lolium/enzimología , Malondialdehído/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Prolina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Solubilidad , Estrés Fisiológico/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA