Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405676, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207046

RESUMEN

Transparent electrodes (TEs) are vital in optoelectronic devices, enabling the interaction of light and charges. While indium tin oxide (ITO) has traditionally served as a benchmark TE, its high cost prompts the exploration of alternatives to optimize electrode characteristics and improve device efficiencies. Conducting polymers, which combine polymer advantages with metal-like conductivity, emerge as a promising solution for TEs. This work introduces a two-in-one electron transport layer (ETL) and TE based on films of polyethylenimine ethoxylated (PEIE)-modified poly(benzodifurandione) (PBFDO). These PEIE-modified PBFDO layers exhibit a unique combination of properties, including low sheet resistance (130 Ω sq-1), low work function (4.2 eV), and high optical transparency (>85% in the UV-vis-NIR range). In contrast to commonly used poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the doping level of PBFDO remains unaffected by the PEIE treatment, as verified through UV-vis-NIR absorption and X-ray photoelectron spectroscopy measurements. When employed as a two-in-one ETL/TE in organic solar cells, the PEIE-modified PBFDO electrode exhibits performance comparable to conventional ITO electrodes. Moreover, this work demonstrates all-organic solar cells with record-high power conversion efficiencies of >15.1% under indoor lighting conditions. These findings hold promise for the development of fully printed, all-organic optoelectronic devices.

2.
J Mater Chem A Mater ; 10(19): 10768-10779, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35706705

RESUMEN

The desired attributes of organic photovoltaics (OPV) as a low cost and sustainable energy harvesting technology demand the use of non-halogenated solvent processing for the photoactive layer (PAL) materials, preferably of low synthetic complexity (SC) and without compromising the power conversion efficiency (PCE). Despite their record PCEs, most donor-acceptor conjugated copolymers in combination with non-fullerene acceptors are still far from upscaling due to their high cost and SC. Here we present a non-halogenated and low SC ink formulation for the PAL of organic solar cells, comprising PTQ10 and PC61BM as donor and acceptor materials, respectively, showing a record PCE of 7.5% in blade coated devices under 1 sun, and 19.9% under indoor LED conditions. We further study the compatibility of the PAL with 5 different electron transport layers (ETLs) in inverted architecture. We identify that commercial ZnO-based formulations together with a methanol-based polyethyleneimine-Zn (PEI-Zn) chelated ETL ink are the most suitable interlayers for outdoor conditions, providing fill factors as high as 74% and excellent thickness tolerance (up to 150 nm for the ETL, and >200 nm for the PAL). In indoor environments, SnO2 shows superior performance as it does not require UV photoactivation. Semi-transparent devices manufactured entirely in air via lamination show indoor PCEs exceeding 10% while retaining more than 80% of the initial performance after 400 and 350 hours of thermal and light stress, respectively. As a result, PTQ10:PC61BM combined with either PEI-Zn or SnO2 is currently positioned as a promising system for industrialisation of low cost, multipurpose OPV modules.

3.
AAPS PharmSciTech ; 12(3): 854-61, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21710335

RESUMEN

In this work, we explore the idea of using mathematical models to build design space for the primary drying portion of freeze-drying process. We start by defining design space for freeze-drying, followed by defining critical quality attributes and critical process parameters. Then using mathematical model, we build an insilico design space. Input parameters to the model (heat transfer coefficient and mass transfer resistance) were obtained from separate experimental runs. Two lyophilization runs are conducted to verify the model predictions. This confirmation of the model predictions with experimental results added to the confidence in the insilico design space. This simple step-by-step approach allowed us to minimize the number of experimental runs (preliminary runs to calculate heat transfer coefficient and mass transfer resistance plus two additional experimental runs to verify model predictions) required to define the design space. The established design space can then be used to understand the influence of critical process parameters on the critical quality attributes for all future cycles.


Asunto(s)
Liofilización/métodos , Modelos Químicos , Tecnología Farmacéutica/métodos , Algoritmos , Simulación por Computador , Control de Calidad , Temperatura , Volatilización , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA