Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 33(1): 297-304, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36409387

RESUMEN

Two new BODIPY-fluorene-fullerene (3) and BODIPY-fluorene-BODIPY (4) conjugates were designed, synthesized, and characterized for the first time. The structural properties of compounds were investigated with elemental analysis, mass, 1H, and 13C NMR techniques. Absorption and fluorescence spectroscopy were used to examine the photophysical (absorption and emission profiles, fluorescence quantum yields, and lifetimes) and photochemical (formation of singlet oxygen (1O2)) properties. It was observed that the novel compounds (3) and (4) showed high molar extinction coefficients and good 1O2 quantum yields. 1O2 formation ability of the BODIPY-fluorene-fullerene conjugate (3) was more efficient than that of the BODIPY-fluorene-BODIPY conjugate (4). Furthermore, photosensitization ability of both conjugate systems was more remarkable than some commonly used BODIPY based photosensitizers. The data presented in this work indicate that these two novel systems are effective 1O2 photosensitizers that might be used for various areas of applications such as photodynamic therapy and photocatalysis.

2.
Biosens Bioelectron ; 216: 114612, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952434

RESUMEN

Theranostic, which integrates the diagnosis and tumor treatment in tandem, is an emerging strategy in cancer treatment. Here, we report a novel and unique theranostic nanoparticle, HBCP NP, based on hexa-BODIPY cyclophosphazene (HBCP). Due to the unique bulky molecular structure of HBCP, this nanoparticle can simultaneously perform near-infrared (NIR) fluorescence imaging and photoacoustic imaging (PAI). Interestingly, since reactive oxygen species (ROS) generation of HBCP NPs is completely inhibited, 'safe' fluorescence imaging is possible without the risk of cell damage even under laser irradiation. Finally, NIR fluorescence imaging and PAI in 4T1 tumor-bearing mice demonstrated selective accumulation of HBCP NPs at tumor sites. In addition, HBCP NPs exhibited excellent photothermal effects under high-power laser irradiation, achieving effective tumor growth inhibition.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Animales , Compuestos de Boro , Línea Celular Tumoral , Hexosaminidasa A , Ratones , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica , Técnicas Fotoacústicas/métodos , Especies Reactivas de Oxígeno , Nanomedicina Teranóstica/métodos
3.
Chemistry ; 27(68): 17181-17187, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34519409

RESUMEN

The covalent attachment of molecular photosensitizers (PS) to polyoxometalates (POMs) opens new pathways to PS-POM dyads for light-driven charge-transfer and charge-storage. Here, we report a synthetic route for the covalent linkage of BODIPY-dyes to Anderson-type polyoxomolybdates by using CLICK chemistry (i. e. copper-catalyzed azide-alkyne cycloaddition, CuAAC). Photophysical properties of the dyad were investigated by combined experimental and theoretical methods and highlight the role of both sub-components for the charge-separation properties. The study demonstrates how CLICK chemistry can be used for the versatile linkage of organic functional units to molecular metal oxide clusters.


Asunto(s)
Química Clic , Fármacos Fotosensibilizantes , Aniones , Azidas , Compuestos de Boro , Polielectrolitos
4.
Turk J Chem ; 44(1): 1-14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488139

RESUMEN

In the present work, pyrene-boron-dipyrromethene (BODIPY)-substituted novel water-soluble cyclotriphosphazene derivatives (6 and 7) were synthesized by click reactions between a cyclotriphosphazene derivative with a hydrophilic glycol side group (2) and BODIPYs (4 and 5). All of the new compounds (2, 6, and 7) were characterized by Fourier-transform infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry and elemental analysis. The photophysical properties of the BODIPY-substituted cyclotriphosphazenes (6 and 7) were investigated by UV-Vis and fluorescence emission spectroscopy in water and water/solvent mixtures. It was found that the target compounds were soluble in water and could be potential candidates as water-soluble fluorescent dyes for the desired applications.

5.
J Fluoresc ; 29(5): 1143-1152, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31407124

RESUMEN

In the present work, novel water-soluble cyclotriphosphazene derivatives (3b and 4b) were synthesized by 'click' reactions between cyclotriphosphazene derivative with hydrophilic glycol side groups (2) and Bodipy's (3a and 4a). All newly synthesized compounds (2, 3b and 4b) were characterized by fourier-transform infrared (FTIR), mass and NMR spectroscopy techniques and elemental analysis (EA). The photophysical properties of Bodipy substituted novel cyclotriphosphazenes (3a and 4a) were examined via UV-Vis absorption and fluorescence emission spectroscopy inside water and many organic solvents such as acetone, tetrahydrofuran, dichloromethane, dimethyl sulfoxide, etc., and the results were compared with the each other. Graphical Abstract.

6.
J Fluoresc ; 26(4): 1173-81, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27085549

RESUMEN

A new type of fluorescent chemosensor based on tethered hexa-borondipyrromethene cyclotriphosphazene platform (HBTC) linked via triazole groups was designed and synthesized. Its sensing behavior toward metal ions was investigated by ultraviolet-visible and fluorescence spectroscopies. Addition of a Fe(2+) ion to a tetrahydrofuran solution of HBTC gave a visual color change as well as a significantly quenched fluorescence emission, while other tested 19 metal ions induced no color or spectral changes. This compound was found to be highly selective and sensitive for Fe(2+) with a low limit of detection (2.03 µM) which is, to the best of our knowledge, the superior than the previously studied chemosensors for Fe(2+). Graphical Abstract ᅟ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA