Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; : 2402868, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248230

RESUMEN

The 2017/18 influenza season was characterized by unusual high numbers of severe infections and hospitalizations. Instead of influenza A viruses, this season was dominated by infections with influenza B viruses of the Yamagata lineage. While this IBV/Yam dominance was associated with a vaccine mismatch, a contribution of virus intrinsic features to the clinical severity of the infections was speculated. Here, we performed a molecular and phenotypic characterization of three IBV isolates from patients with severe flu symptoms in 2018 and compared it to an IBV/Yam isolate from 2016 using experimental models of increasing complexity, including human lung explants, lung organoids, and alveolar macrophages. Viral genome sequencing revealed the presence of clade but also isolate specific mutations in all viral genes, except NP, M1, and NEP. Comparative replication kinetics in different cell lines provided further evidence for improved replication fitness, tolerance towards higher temperatures, and the development of immune evasion mechanisms by the 2018 IBV isolates. Most importantly, immunohistochemistry of infected human lung explants revealed an impressively altered cell tropism, extending from AT2 to AT1 cells and macrophages. Finally, transcriptomics of infected human lung explants demonstrated significantly reduced amounts of type I and type III IFNs by the 2018 IBV isolate, supporting the existence of additional immune evasion mechanisms. Our results show that the severeness of the 2017/18 Flu season was not only the result of a vaccine mismatch but was also facilitated by improved adaptation of the circulating IBV strains to the environment of the human lower respiratory tract.

2.
Cells ; 11(14)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35883640

RESUMEN

Respiratory infections with newly emerging zoonotic viruses such as SARS-CoV-2, the etiological agent of COVID-19, often lead to the perturbation of the human innate and adaptive immune responses causing severe disease with high mortality. The responsible mechanisms are commonly virus-specific and often include either over-activated or delayed local interferon responses, which facilitate efficient viral replication in the primary target organ, systemic viral spread, and rapid onset of organ-specific and harmful inflammatory responses. Despite the distinct replication strategies, human infections with SARS-CoV-2 and highly pathogenic avian influenza viruses demonstrate remarkable similarities and differences regarding the mechanisms of immune induction, disease dynamics, as well as the long-term sequelae, which will be discussed in this review. In addition, we will highlight some important lessons about the effectiveness of antiviral and immunomodulatory therapeutic strategies that this pandemic has taught us.


Asunto(s)
COVID-19 , Animales , Antivirales/uso terapéutico , Humanos , Inflamación , Pandemias , SARS-CoV-2
3.
Front Immunol ; 12: 752227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659259

RESUMEN

Since November 2019 the SARS-CoV-2 pandemic has caused nearly 200 million infection and more than 4 million deaths globally (Updated information from the World Health Organization, as on 2nd Aug 2021). Within only one year into the pandemic, several vaccines were designed and reached approval for the immunization of the world population. The remarkable protective effects of the manufactured vaccines are demonstrated in countries with high vaccination rates, such as Israel and UK. However, limited production capacities, poor distribution infrastructures and political hesitations still hamper the availability of vaccines in many countries. In addition, due to the emergency of SARS-CoV-2 variants with immune escape properties towards the vaccines the global numbers of new infections as well as patients developing severe COVID-19, remains high. New studies reported that about 8% of infected individuals develop long term symptoms with strong personal restrictions on private as well as professional level, which contributes to the long socioeconomic problems caused by this pandemic. Until today, emergency use-approved treatment options for COVID-19 are limited to the antiviral Remdesivir, a nucleoside analogue targeting the viral polymerase, the glucocorticosteroide Dexamethasone as well as neutralizing antibodies. The therapeutic benefits of these treatments are under ongoing debate and clinical studies assessing the efficiency of these treatments are still underway. To identify new therapeutic treatments for COVID-19, now and by the post-pandemic era, diverse experimental approaches are under scientific evaluation in companies and scientific research teams all over the world. To accelerate clinical translation of promising candidates, repurposing approaches of known approved drugs are specifically fostered but also novel technologies are being developed and are under investigation. This review summarizes the recent developments from the lab bench as well as the clinical status of emerging therapeutic candidates and discusses possible therapeutic entry points for the treatment strategies with regard to the biology of SARS-CoV-2 and the clinical course of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/efectos de los fármacos , Anticuerpos Monoclonales/uso terapéutico , COVID-19/patología , COVID-19/prevención & control , Humanos , SARS-CoV-2/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA